Chapter 1: Problem 35
If \(\lim _{x \rightarrow 0} \frac{x^{2 n} \sin ^{n} x}{x^{2 n}-\sin ^{2 n} x}\) is a non zero finite number, then n must be equal to (A) 1 (B) 2 (C) 3 (D) none of these
Chapter 1: Problem 35
If \(\lim _{x \rightarrow 0} \frac{x^{2 n} \sin ^{n} x}{x^{2 n}-\sin ^{2 n} x}\) is a non zero finite number, then n must be equal to (A) 1 (B) 2 (C) 3 (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{x \rightarrow 0} \frac{1-\cos x+2 \sin x-\sin ^{3} x-x^{2}+3 x^{4}}{\tan ^{3} x-6 \sin ^{2} x+x-5 x^{3}}$ equals (A) 1 (B) 2 (C) 3 (D) 4
Let $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}^{2 \mathrm{n}} \sin \frac{1}{\mathrm{x}}+\mathrm{x}}{1+\mathrm{x}^{2 \mathrm{n}}}$ then which of the following alternative(s) is/are correct ? (A) \(\lim _{x \rightarrow \infty} x f(x)=2\) (B) \(\lim \mathrm{f}(\mathrm{x})\) does not exist (C) \(\lim _{x \rightarrow 0} f(x)\) does not exist (D) \(\lim _{x \rightarrow-\gamma} \mathrm{f}(\mathrm{x})\) is equal to zero.
The value of $\lim _{x \rightarrow 0} \frac{(\tan (\\{x\\}-1)) \sin \\{x\\}}{\\{x\\}(\\{x\\}-1)}\(, where \)\\{x\\}$ denotes the fractional part function, is (A) is 1 (B) is tan 1 (C) is \(\sin 1\) (D) is non-existent
Suppose that a and \(\mathrm{b}\) are real positive numbers then the value of \(\lim _{t \rightarrow 0}\left(\frac{b^{t+1}-a^{t+1}}{b-a}\right)^{1 / t}\) has the value equals to (A) $\frac{\mathrm{a} \ln \mathrm{b}-\mathrm{b} \ln \mathrm{a}}{\mathrm{b}-\mathrm{a}}$ (B) $\frac{\mathrm{b} \ln \mathrm{b}-\mathrm{a} \ln \mathrm{a}}{\mathrm{b}-\mathrm{a}}$ (C) \(\mathrm{b} \ln \mathrm{b}-\mathrm{a} \ln \mathrm{a}\) (D) \(\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}\)
The number of points of where limit of \(\mathrm{f}(\mathrm{x})\) does not exist is : (A) 3 (B) 4 (C) 5 (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.