Chapter 1: Problem 34
\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these
Chapter 1: Problem 34
\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{x \rightarrow 1} \frac{(\ell n(1+x)-\ell \operatorname{n} 2)\left(3.4^{x-1}-3 x\right)}{\left[(7+x)^{1 / 3}-(1+3 x)^{1 / 2}\right] \cdot \sin (x-1)}$ equals (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these
$\lim _{x \rightarrow 1} \frac{1+\sin \pi\left(\frac{3 x}{1+x^{2}}\right)}{1+\cos \pi x}$ is equal to (A) \(\overline{0}\) (B) 1 (C) 2 (D) None of these
$\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{p}+\sqrt[n]{q}}{2}\right)^{n}\(, p, \)q>0$ is equal to (A) 1 (B) \(\sqrt{\mathrm{pq}}\) (C) pq (D) \(\frac{\mathrm{pq}}{2}\)
Assertion (A): $\lim _{x \rightarrow \pi / 2} \frac{\sin \left(\cot ^{2} x\right)}{(\pi-2 x)^{2}}=\frac{1}{2}$ Reason $(\mathbf{R}): \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\( and \)\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1\(, where \)\theta$ is measured in radians.
If $\mathrm{f}(\mathrm{x})=\left\\{\begin{array}{cl}\frac{\sin ([\mathrm{x}]+2 \mathrm{x})}{[\mathrm{x}]} & \text { if }[\mathrm{x}] \neq 0 \\ 0 & \text { if }[\mathrm{x}]=0\end{array}\right.\(, where \)[.]$ denotes the greatest integer function, then \(\lim _{x \rightarrow 0} f(x)\) is (A) 0 (B) 1 (C) \(-1\) (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.