Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The value of the limit $\lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x}$ is \((\mathrm{A})\) (B) 2 (C) \(\mathrm{e}^{6 \mathrm{~m}}\) (D) \(\ln 6 \mathrm{~m}\)

Short Answer

Expert verified
Question: Determine the value of the limit: $\lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x}$. Answer: (B) 2

Step by step solution

01

Definition of the exponential function

Recall that \(e^x = \lim_{n\to\infty} (1 + \frac{x}{n})^n\). Using this definition, we rewrite the limit expression: $$ \lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x} = e^{\lim _{x \rightarrow 0} 2m \cdot \frac{\sin \frac{x}{m}+\cos \frac{3 x}{m} - 1}{x}} $$
02

Express using exponents

Introduce an auxiliary variable \(n = \frac{2m}{x}\) so that \(x = \frac{2m}{n}\) when \(n = \frac{2m}{x}\) and rewrite the limit: $$ \lim _{n \rightarrow \infty} 2m \cdot \frac{\sin \frac{2m}{nm}+\cos \frac{6 m}{n \cdot m} - 1}{\frac{2m}{n}} $$ Now substitute \(n\) back in place of the auxilary variable: $$ \lim _{n \rightarrow \infty} 2m \cdot \frac{\sin \frac{2m}{\frac{2m}{x}}+\cos \frac{6 m}{\frac{2m}{x} \cdot m} - 1}{\frac{2m}{\frac{2m}{x}}} $$
03

Apply L'Hôpital's Rule

Since the limit is in the indeterminate form of \(0/\infty\), we can apply L'Hôpital's Rule to find the limit. We obtain the derivatives of the numerator and denominator with respect to \(x\): $$ \frac{d}{dx}(\sin \frac{x}{m}+\cos \frac{3 x}{m} - 1) = \frac{1}{m} \cos \frac{x}{m} - \frac{3}{m} \sin \frac{3x}{m} $$ $$ \frac{d}{dx}(x) = 1 $$ Now we can take the limit as \(x \rightarrow 0\): $$ \lim _{x \rightarrow 0} \frac{\frac{1}{m} \cos \frac{x}{m} - \frac{3}{m} \sin \frac{3x}{m}}{1} = \frac{1}{m} \cos (0) - \frac{3}{m} \sin (0) = \frac{1}{m} $$ Therefore the limit expression becomes: $$ \lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x} = e^{\lim _{x \rightarrow 0} 2m \cdot \frac{1}{m}} = e^2 $$ The answer is (B) 2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free