Chapter 1: Problem 32
The value of the limit $\lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x}$ is \((\mathrm{A})\) (B) 2 (C) \(\mathrm{e}^{6 \mathrm{~m}}\) (D) \(\ln 6 \mathrm{~m}\)
Chapter 1: Problem 32
The value of the limit $\lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x}$ is \((\mathrm{A})\) (B) 2 (C) \(\mathrm{e}^{6 \mathrm{~m}}\) (D) \(\ln 6 \mathrm{~m}\)
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{n \rightarrow \infty}\left(\frac{n !}{(m n)^{n}}\right)^{1 / n}(m \in N)$ is equal to (A) \(1 / \mathrm{em}\) (B) \(\mathrm{m} / \mathrm{e}\) (C) em (D) \(\mathrm{e} / \mathrm{m}\)
If $\lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2}+a x+1}-\sqrt{a^{2} x^{2}+1}\right)$ $=\mathrm{K} \cdot \lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})\( then the value of \)\mathrm{K}$ (A) (B) (C) \(2 \mathrm{a}\) (D) None of these
Consider the function \(f(x)=\cos ^{-1}[\cot x]\) where [ ] indicates greatest integer function. Assertion (A): \(\lim _{x \rightarrow \frac{\pi}{2}} f(x)\) exists Reason \((\mathbf{R}):\) Both \(\lim \mathrm{f}(\mathrm{x})\) and $\lim \mathrm{f}(\mathrm{x})$ are finite. \(x \rightarrow \frac{\pi}{2} \quad x \rightarrow \frac{\pi}{2}\)
$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)
If \(\left\\{t_{n}\right\\}\) be a sequence such that $t_{n}=\frac{2 n}{3 n+1}, S_{n}\( denote the sum of the first \)\mathrm{n}\( terms and \)\ell=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\sqrt{2}} \frac{\mathrm{S}_{\mathrm{n}+1}-\mathrm{S}_{\mathrm{n}}}{\sqrt{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}}}$, then $\ell=\lim _{n \rightarrow \infty} \ell+2 \ell^{2}+3 \ell^{2}+\ldots \ldots .+(n+1) \ell^{n+1}$ equals (A) 18 (B) 9 (C) 3 (D) 6
What do you think about this solution?
We value your feedback to improve our textbook solutions.