Chapter 1: Problem 31
The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these
Chapter 1: Problem 31
The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of the limit $\lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x}$ is \((\mathrm{A})\) (B) 2 (C) \(\mathrm{e}^{6 \mathrm{~m}}\) (D) \(\ln 6 \mathrm{~m}\)
The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$
Let $\mathrm{P}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}+\ldots \ldots .+\mathrm{a}_{100} \mathrm{x}^{100}\(, where \)\mathrm{a}_{1}=$ 1 and \(a_{i} \in R \forall i=2,3,4, \ldots, 100\) then \(\lim _{x \rightarrow 0} \frac{\sqrt[100]{1+P(x)}-1}{x}\) has the value equal to (A) 100 (B) \(\frac{1}{100}\) (C) 1 (D) 5050
$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite
Give a real valued function \(\mathrm{f}\) such that $f(x)=\left\\{\begin{array}{cll}\frac{\tan ^{2} x}{\left(x^{2}-[x]\right)^{2}} & \text { for } & x>0 \\ 1 & \text { for } & x=0 \\ \sqrt{\\{x\\} \cot \\{x\\}} & \text { for } & x<0\end{array}\right.$ where, [.] is the integral part and \\{\\} is the fractional part of \(\mathrm{x}\), then (A) \(\lim _{x \rightarrow 0} f(x)=1\) (B) \(\lim _{x \rightarrow 0^{-}} f(x)=\cot 1\) (C) \(\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1\) (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.