Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these

Short Answer

Expert verified
(A) 0 (B) 1 (C) infinity (D) none of these Answer: (D) none of these

Step by step solution

01

Rewrite the expression as a single root

We have the expression, \(n^2(\sqrt[n]{a} - \sqrt[n+1]{a})\), which can be rewritten as \(n^2(\frac{a^{1/n} - a^{1/(n+1)}}{a^{1/(n+1)}})\) by taking the factor \(a^{1/(n+1)}\) out of the second term and dividing both terms by \(a^{1/(n+1)}\). Now, we can rewrite it as a single root expression: \(n^2(a^{1/(n+1)}(a^{1/n - 1/(n+1)} - 1))\)
02

Apply the chain rule for limits

Now, we can apply limit as \(n \to \infty\) on the given expression: \(\lim_{n\to\infty} n^2(a^{1/(n+1)}(a^{1/n - 1/(n+1)} - 1))\) With this expression, we can apply the chain rule for limits. We have two terms: \(n^2\) and \((a^{1/(n+1)}(a^{1/n - 1/(n+1)} - 1))\).
03

Find the limit for each term

For the first term: \(\lim_{n\to\infty} n^2 = \infty\) For the second term, we can simplify \(1/n - 1/(n+1)\): \(1/n - 1/(n+1) = \frac{1}{n(n+1)}\) Now, for the limit of the second term: \(\lim_{n\to\infty} (a^{1/(n+1)}(a^{1/n - 1/(n+1)} - 1))\) We can rewrite it as: \(\lim_{n\to\infty} (a^{1/(n+1)}(a^{\frac{1}{n(n+1)}} - 1))\) Now, we apply limit, and use the property that \(\lim_{x\to 0}(1+x)^{1/x} = e\). So, \(\lim_{n\to\infty} a^{\frac{1}{n(n+1)}} = e^{\ln a}\) And the limit of the second term is: \(\lim_{n\to\infty} (a^{1/(n+1)}(e^{\ln a} - 1)) = e^{\ln a}(e^{\ln a} - 1)\)
04

Multiply the limits

Now, we can multiply the limits of both terms: \(\lim_{n\to\infty} n^2(a^{1/(n+1)}(a^{1/n - 1/(n+1)} - 1))\) \(= (\lim_{n\to\infty} n^2)(\lim_{n\to\infty} a^{1/(n+1)}(a^{1/n - 1/(n+1)} - 1))\) \(= \infty (e^{\ln a}(e^{\ln a} - 1))\) Since \(a > 0\), \(e^{\ln a}(e^{\ln a} - 1)\) is finite. Therefore, the given expression is unbounded, and the limit does not exist. Thus, the correct answer is: (D) none of these

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The value of the limit $\lim _{x \rightarrow 0}\left(\sin \frac{x}{m}+\cos \frac{3 x}{m}\right)^{2 m / x}$ is \((\mathrm{A})\) (B) 2 (C) \(\mathrm{e}^{6 \mathrm{~m}}\) (D) \(\ln 6 \mathrm{~m}\)

The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$

Let $\mathrm{P}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}+\ldots \ldots .+\mathrm{a}_{100} \mathrm{x}^{100}\(, where \)\mathrm{a}_{1}=$ 1 and \(a_{i} \in R \forall i=2,3,4, \ldots, 100\) then \(\lim _{x \rightarrow 0} \frac{\sqrt[100]{1+P(x)}-1}{x}\) has the value equal to (A) 100 (B) \(\frac{1}{100}\) (C) 1 (D) 5050

$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite

Give a real valued function \(\mathrm{f}\) such that $f(x)=\left\\{\begin{array}{cll}\frac{\tan ^{2} x}{\left(x^{2}-[x]\right)^{2}} & \text { for } & x>0 \\ 1 & \text { for } & x=0 \\ \sqrt{\\{x\\} \cot \\{x\\}} & \text { for } & x<0\end{array}\right.$ where, [.] is the integral part and \\{\\} is the fractional part of \(\mathrm{x}\), then (A) \(\lim _{x \rightarrow 0} f(x)=1\) (B) \(\lim _{x \rightarrow 0^{-}} f(x)=\cot 1\) (C) \(\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1\) (D) none of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free