Chapter 1: Problem 29
$\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{n}}{\mathrm{n}^{2}-2}+\frac{4^{\mathrm{n}}(-1)^{\mathrm{n}}}{2^{\mathrm{n}}-1}\right)^{-1}$ is equal to (A) 2 (B) (C) 0 (D) None of these
Chapter 1: Problem 29
$\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{n}}{\mathrm{n}^{2}-2}+\frac{4^{\mathrm{n}}(-1)^{\mathrm{n}}}{2^{\mathrm{n}}-1}\right)^{-1}$ is equal to (A) 2 (B) (C) 0 (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these
The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)
Given $l_{1}=\lim _{x \rightarrow \frac{\pi}{4}} \cos ^{-1}\left[\sec \left(x-\frac{\pi}{4}\right)\right]$; $l_{2}=\lim _{x \rightarrow \frac{\pi}{4}} \sin ^{-1}\left[\operatorname{cosec}\left(x+\frac{\pi}{4}\right)\right]$ $l_{3}=\lim _{x \rightarrow \frac{\pi}{4}} \tan ^{-1}\left[\cot \left(x+\frac{\pi}{4}\right)\right]$ $l_{4}=\lim _{x \rightarrow \frac{\pi}{4}} \cot ^{-1}\left[\tan \left(x-\frac{\pi}{4}\right)\right]$ where \([\mathrm{x}]\) denotes greatest integer function then which of the following limits exist (A) \(l_{1}\) (B) \(l_{2}\) (D) \(l_{4}\) (C) \(l_{3}\)
For which of the following functions, Approx \(\mathrm{f}(\mathrm{x})\) exists : (A) \(\underset{x \rightarrow 1}{\text { Approx }} \frac{x^{2}-1}{|x-1|}\) (B) Approx \(\frac{2\\{x\\}-4}{[x]-3}\) (C) $\underset{x \rightarrow 0}{\operatorname{Approx}} \frac{1}{2-2^{\frac{1}{x}}}$ (D) None of these
$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.