Chapter 1: Problem 28
$\lim _{x \rightarrow 0} \frac{1}{x}\left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right)+x \ln \left(1+a^{1 / x}\right), a>0, a \neq$ (A) a (B) (C) \(1+\mathrm{a}\) (D) None of these
Chapter 1: Problem 28
$\lim _{x \rightarrow 0} \frac{1}{x}\left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right)+x \ln \left(1+a^{1 / x}\right), a>0, a \neq$ (A) a (B) (C) \(1+\mathrm{a}\) (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)
$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)
$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite
If \(\left\\{t_{n}\right\\}\) be a sequence such that $t_{n}=\frac{2 n}{3 n+1}, S_{n}\( denote the sum of the first \)\mathrm{n}\( terms and \)\ell=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\sqrt{2}} \frac{\mathrm{S}_{\mathrm{n}+1}-\mathrm{S}_{\mathrm{n}}}{\sqrt{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}}}$, then $\ell=\lim _{n \rightarrow \infty} \ell+2 \ell^{2}+3 \ell^{2}+\ldots \ldots .+(n+1) \ell^{n+1}$ equals (A) 18 (B) 9 (C) 3 (D) 6
The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$
What do you think about this solution?
We value your feedback to improve our textbook solutions.