Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{x \rightarrow 0} \frac{1}{x}\left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right)+x \ln \left(1+a^{1 / x}\right), a>0, a \neq$ (A) a (B) (C) \(1+\mathrm{a}\) (D) None of these

Short Answer

Expert verified
(D) None of these

Step by step solution

01

Separate the function into two parts

We will first find the limit of each part separately: 1. \(\lim_{x \rightarrow 0} \frac{1}{x}\left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right)\) 2. \(\lim_{x \rightarrow 0} x \ln \left(1+a^{1 / x}\right)\)
02

Find the limit of the first part

To find the limit of the first part as x approaches 0, we can multiply and divide by the conjugate of the expression inside the bracket: \(\lim_{x \rightarrow 0} \frac{1}{x}\left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right) \cdot \frac{\left(\sqrt{\frac{1}{x^{2}}+1}+\frac{1}{x}\right)}{\left(\sqrt{\frac{1}{x^{2}}+1}+\frac{1}{x}\right)}\) This simplifies to: \(\lim_{x \rightarrow 0} \frac{1}{x} \cdot \frac{(\frac{1}{x^2}+1)-\frac{1}{x^2}}{\sqrt{\frac{1}{x^2}+1}+\frac{1}{x}}\) Which further simplifies to: \(\lim_{x \rightarrow 0} \frac{1}{\sqrt{\frac{1}{x^2}+1}+\frac{1}{x}}\) We can now use the limit properties and substitution method: Limit of the first part = \(\frac{1}{\sqrt{\frac{1}{0^2}+1}+\frac{1}{0}} = \frac{1}{\sqrt{1}+\infty} = 0\)
03

Find the limit of the second part

To find the limit of the second part as x approaches 0, we can use the limit properties and substitution method: \(\lim_{x \rightarrow 0} x \ln \left(1+a^{1 / x}\right) = 0 \cdot \ln (1 + a^{\infty}) = 0 \cdot \ln (1 + a) = 0\)
04

Add the limits of both parts

Now we know the limits of both parts, we can add the limits to find the final answer: Final Limit = Limit of the first part + Limit of the second part = 0 + 0 = 0 The limit of this function as x approaches 0 is \(0\). So the correct answer is (D) None of these.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)

$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)

$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite

If \(\left\\{t_{n}\right\\}\) be a sequence such that $t_{n}=\frac{2 n}{3 n+1}, S_{n}\( denote the sum of the first \)\mathrm{n}\( terms and \)\ell=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\sqrt{2}} \frac{\mathrm{S}_{\mathrm{n}+1}-\mathrm{S}_{\mathrm{n}}}{\sqrt{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}}}$, then $\ell=\lim _{n \rightarrow \infty} \ell+2 \ell^{2}+3 \ell^{2}+\ldots \ldots .+(n+1) \ell^{n+1}$ equals (A) 18 (B) 9 (C) 3 (D) 6

The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free