Chapter 1: Problem 27
\(\lim _{x \rightarrow 1} \frac{\tan (x-1) \cdot \log _{e} x^{x-1}}{|x-1|^{3}}\) is equal to (A) 1 (B) \(-1\) (C) 3 (D) None of these
Chapter 1: Problem 27
\(\lim _{x \rightarrow 1} \frac{\tan (x-1) \cdot \log _{e} x^{x-1}}{|x-1|^{3}}\) is equal to (A) 1 (B) \(-1\) (C) 3 (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of $\lim _{\mathrm{x} \rightarrow 1}\left(\frac{\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+1}{\mathrm{x}^{2}+2 \mathrm{x}+3}\right)^{\frac{1-\cos (\mathrm{x}-1)}{(\mathrm{x}-1)^{2}}}$ is (A) e (B) \(\mathrm{e}^{1 / 2}\) (C) 1 (D) none of these
If \(\lim _{x \rightarrow 0} \frac{x^{2 n} \sin ^{n} x}{x^{2 n}-\sin ^{2 n} x}\) is a non zero finite number, then n must be equal to (A) 1 (B) 2 (C) 3 (D) none of these
Consider the function \(f(x)=\left(\frac{a x+1}{b x+2}\right)^{x}\) where \(a^{2}+b^{2} \neq 0\) then \(\lim f(x)\) (A) exists for all values of \(a\) and \(b\) (B) is zero for \(\mathrm{a}<\mathrm{b}\) (C) is non existent for \(\mathrm{a}>\mathrm{b}\) (D) is e \({ }^{-\left(\frac{1}{a}\right)}\) or \(e^{-\left(\frac{1}{b}\right)}\) if \(a=b\)
Let $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\left(\frac{3}{\pi} \tan ^{-1} 2 \mathrm{x}\right)^{2 \mathrm{n}}+5}$. Then the set of values of \(x\) for which \(f(x)=0\), is (A) \(|2 x|>\sqrt{3}\) (B) \(|(2 x)|<\sqrt{3}\) (C) \(|2 x| \geq \sqrt{3}\) (D) \(|2 x| \leq \sqrt{3}\)
The true statement(s) is / are (A) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=0\), then there must exist a number \(\mathrm{d}\) such that \(\mathrm{f}(\mathrm{d})<0.001\) (B) \(\lim _{x \rightarrow c} f(x)=L\), is equivalent to $\lim _{x \rightarrow c}(f(x)-L)=0$. (C) \(\lim _{x \rightarrow a}(f(x)+g(x))\) may exist even if the limits $\lim _{x \rightarrow i}$ \(\left(\mathrm{f}(\mathrm{x})\right.\) and $\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{g}(\mathrm{x})$ do not exist. (D) If \(\lim _{x \rightarrow a} f(x)\) exists and $\lim _{x \rightarrow a}(f(x)+g(x))$ does not exist, then \(\lim _{x \rightarrow a} g(x)\) does not exist.
What do you think about this solution?
We value your feedback to improve our textbook solutions.