Chapter 1: Problem 23
$\lim _{x \rightarrow-\infty} \frac{x^{5} \tan \left(\frac{1}{\pi x^{2}}\right)+3|x|^{2}+7}{|x|^{3}+7|x|+8}$ is equal to (A) \(\pi\) (B) \(\frac{1}{\pi}\) (C) \(-\frac{1}{\pi}\) (D) None of these
Chapter 1: Problem 23
$\lim _{x \rightarrow-\infty} \frac{x^{5} \tan \left(\frac{1}{\pi x^{2}}\right)+3|x|^{2}+7}{|x|^{3}+7|x|+8}$ is equal to (A) \(\pi\) (B) \(\frac{1}{\pi}\) (C) \(-\frac{1}{\pi}\) (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{x \rightarrow 0}\left\\{(1+x)^{\frac{2}{x}}\right\\}\) (where \(\\{x\\}\) denotes the fractional part of \(\mathrm{x}\) ) is equal to (A) \(\mathrm{e}^{2}-7\) (B) \(e^{2}-8\) (C) \(\mathrm{e}^{2}-6\) (D) None of these
$\lim _{x \rightarrow \infty}\left(1+a^{2}\right)^{x} \cdot \frac{b}{\left(1+a^{2}\right)^{x}}\( is \)(a, b \in R)$ (A) \(\sqrt{b}\) (B) b (C) \(\mathrm{b}^{2}\) (D) none of these
The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)
Column-I (A) If \(\mathrm{f}(\mathrm{x})=|\mathrm{x}-\mathrm{a}|+|\mathrm{x}-10|+|\mathrm{x}-\mathrm{a}-10|\), where \(\mathrm{a} \in(0,10)\), then the minimum value of \(\mathrm{f}\) is (B) $\lim _{x \rightarrow 0} \frac{x(1-\cos 2 x)^{2}-a(\sin x-\tan x)^{2}}{\tan ^{5} x+a \sin ^{8} x}$ is equal to (C) $\lim _{n \rightarrow \infty} \frac{n^{a} \sin ^{2}(n !)}{n+1}, 00, a \neq 1$ is Column-II (P) 0 (Q) 1 (R) 4 (S) 10 (T) depends on a
$\lim _{y \rightarrow 0}\left[\lim _{x \rightarrow \infty} \frac{\exp \left(\mathrm{x} \ell \mathrm{n}\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)\right)-\exp \left(\mathrm{x} \& \mathrm{n}\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)\right)}{\mathrm{y}}\right]$ $\begin{array}{ll}\text { (A) } \mathrm{a}+\mathrm{b} & \text { (B) } \mathrm{a}-\mathrm{b}\end{array}$ (C) \(b-a \quad\) (D) \(-(a+b)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.