Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{x \rightarrow 1} \frac{(\ell n(1+x)-\ell \operatorname{n} 2)\left(3.4^{x-1}-3 x\right)}{\left[(7+x)^{1 / 3}-(1+3 x)^{1 / 2}\right] \cdot \sin (x-1)}$ equals (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these

Short Answer

Expert verified
Question: Determine the limit of the expression as \(x\) approaches 1: \(\lim_{x\rightarrow 1}\frac{(\ln(1+x)-\ln2)(3.4^{x-1}-3x)}{[(7+x)^{\frac{1}{3}}-(1+3x)^{\frac{1}{2}}]\cdot\sin(x-1)}\) Answer: (D) None of these

Step by step solution

01

Determine if L'Hopital's Rule is needed

First, evaluate the expression when \(x=1\) and check if it's in the \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) indeterminate form. Plugging in \(x=1\), we get: \(\lim_{x\rightarrow 1}\frac{(\ln(1+1)-\ln2)(3.4^{1-1}-3\cdot 1)}{[(7+1)^{\frac{1}{3}}-(1+3\cdot 1)^{\frac{1}{2}}]\cdot\sin(1-1)}\) Simplifying the numerator and denominator: \(\lim_{x\rightarrow 1}\frac{(\ln2-\ln2)(1-3)}{[2^{\frac{1}{3}}-2^{\frac{1}{2}}]\cdot0}\) The expression is in the \(\frac{0}{0}\) indeterminate form, so we can use L'Hopital's Rule.
02

Apply L'Hopital's Rule

Using L'Hopital's Rule, we take the derivative of the numerator and the denominator with respect to \(x\): The derivative of the numerator with respect to \(x\): \(\frac{d}{dx}\Big[(\ln(1+x)-\ln 2)(3.4^{x-1}-3x)\Big]\) We apply the product rule, where \(u = (\ln(1+x)-\ln 2)\) and \(v = (3.4^{x-1}-3x)\): \(u' = \frac{1}{1+x}\) and \(v' = 3.4^{x-1}\ln(3.4)-3\) So, the derivative of the numerator is: \(u'v + uv' = \frac{1}{1+x}(3.4^{x-1}-3x) + (\ln(1+x)-\ln 2)(3.4^{x-1}\ln(3.4)-3)\) The derivative of the denominator with respect to \(x\): \(\frac{d}{dx}\Bigg[\Big[(7+x)^{\frac{1}{3}}-(1+3x)^{\frac{1}{2}}\Big] \cdot\sin(x-1)\Bigg]\) We apply the product rule once again, where \(p = [(7+x)^{\frac{1}{3}}-(1+3x)^{\frac{1}{2}}]\) and \(q = \sin(x-1)\): \(p' = \frac{1}{3}(7+x)^{-\frac{2}{3}} - \frac{3}{2}(1+3x)^{-\frac{1}{2}}(3)\) and \(q' = \cos(x-1)\) So, the derivative of the denominator is: \(p'q + pq' = \Big(\frac{1}{3}(7+x)^{-\frac{2}{3}} - \frac{9}{2}(1+3x)^{-\frac{1}{2}}\Big)\sin(x-1) + \\ [(7+x)^{\frac{1}{3}}-(1+3x)^{\frac{1}{2}}]\cos(x-1)\) Now the limit becomes: $\lim_{x\rightarrow 1} \frac{\frac{1}{1+x}(3.4^{x-1}-3x) + (\ln(1+x)-\ln 2)(3.4^{x-1}\ln(3.4)-3)} {\Big(\frac{1}{3}(7+x)^{-\frac{2}{3}} - \frac{9}{2}(1+3x)^{-\frac{1}{2}}\Big)\sin(x-1) + [(7+x)^{\frac{1}{3}}-(1+3x)^{\frac{1}{2}}]\cos(x-1)}$ Evaluate the new limit as \(x\rightarrow 1\): \(\frac{\frac{1}{2}(1-3) + (0)(0-3)}{\Big(\frac{1}{3}(8)^{-\frac{2}{3}} - \frac{9}{2}(4)^{-\frac{1}{2}}\Big)\sin(0) + [(8)^{\frac{1}{3}}-(4)^{\frac{1}{2}}]\cos(0)}\) Simplify and notice that the sine function term goes to zero: \(\frac{-\frac{1}{2}}{2^{\frac{1}{3}} -2^{\frac{1}{2}}}\) Now we compare our answer to the given options: (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these Our answer does not match any of the given options, so the correct answer is: (D) None of these

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{k}\) is an integer such that $\lim _{n \rightarrow \infty}\left(\left(\cos \frac{k \pi}{4}\right)^{n}-\left(\cos \frac{k \pi}{6}\right)^{n}\right)=0$, then (A) \(\mathrm{k}\) is divisible neither by 4 nor by 6 (B) \(\mathrm{k}\) must be divisible by 12 , but not necessarily by 24 (C) \(\mathrm{k}\) must be divisible by 24 (D) either \(\mathrm{k}\) is divisible by 24 or \(\mathrm{k}\) is divisible neither by 4 nor by 6

$\lim _{y \rightarrow 0}\left[\lim _{x \rightarrow \infty} \frac{\exp \left(\mathrm{x} \ell \mathrm{n}\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)\right)-\exp \left(\mathrm{x} \& \mathrm{n}\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)\right)}{\mathrm{y}}\right]$ $\begin{array}{ll}\text { (A) } \mathrm{a}+\mathrm{b} & \text { (B) } \mathrm{a}-\mathrm{b}\end{array}$ (C) \(b-a \quad\) (D) \(-(a+b)\)

The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)

$\lim _{x \rightarrow 0} \frac{\int_{\sqrt{x}}^{x^{2}} \tan ^{-1}\left(\frac{t^{2}}{1+t^{2}}\right) \text { dt }}{\sin 2 x}$ is equal to (A) 0 (B) 1 (C) \(1 / 2\) (D) does not exist

The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free