Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^{-1} 3 x}-\sqrt[3]{1-\sin ^{-1} 3 x}}{\sqrt{1-\sin ^{-1} 2 x}-\sqrt{1+\tan ^{-1} 2 x}}$ is equal to (A) 1 (B) \(-1\) (C) 2 (D) None

Short Answer

Expert verified
of the above.

Step by step solution

01

Verify if it's an indeterminate form and Apply L'Hopital's Rule if applicable

First, let's plug in \(x=0\) into the expression to check if it's an indeterminate form (which means, it's either of the form 0/0, ∞/∞, or similar forms): \(\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^{-1} 3 x}-\sqrt[3]{1-\sin^{-1} 3 x}}{\sqrt{1-\sin^{-1} 2 x}-\sqrt{1+\tan^{-1} 2 x}} = \frac{\sqrt[3]{1}-\sqrt[3]{1}}{\sqrt{1}-\sqrt{1}}\) Since we have a 0/0 form, we can use L'Hopital's Rule. First, differentiate the numerator and the denominator with respect to x. Differentiate the numerator: $u(x) = \sqrt[3]{1+\tan ^{-1} 3 x}\newline v(x) = \sqrt[3]{1-\sin^{-1} 3 x}$ $u'(x) = \frac{1}{\sqrt[3]{(1+\tan ^{-1} 3 x)^2}} * \frac{1}{1+(3x)^2}*3\newline v'(x) = -\frac{1}{\sqrt[3]{(1-\sin^{-1} 3 x)^2}} * \frac{1}{\sqrt{1-(3x)^2}}*3$ Differentiate the denominator: $m(x) = \sqrt{1-\sin ^{-1} 2 x}\newline n(x) = \sqrt{1+\tan ^{-1} 2 x}$ $m'(x) = -\frac{1}{2\sqrt{1-\sin^{-1} 2 x}} * \frac{1}{\sqrt{1-(2x)^2}}*2\newline n'(x) = \frac{1}{2\sqrt{1+\tan^{-1} 2 x}} * \frac{1}{1+(2x)^2}*2$ Now, we will apply L'Hopital's rule: \(\lim _{x \rightarrow 0} \frac{u'(x) - v'(x)}{m'(x)-n'(x)}\).
02

Use fundamental trigonometric limits

To simplify the expression, we will use the following trigonometric limits: 1. \(\lim_{x \rightarrow 0} \frac{\tan^{-1}(ax)}{x} = a\) 2. \(\lim_{x \rightarrow 0} \frac{\sin^{-1}(ax)}{x} = a\) Applying above limits, we get: \(\lim_{x \rightarrow 0} \frac{\frac{3}{\sqrt[3]{(1+\tan ^{-1} 3 x)^2}} * \frac{1}{1+(3x)^2}-[-\frac{3}{\sqrt[3]{(1-\sin^{-1} 3 x)^2}} * \frac{1}{\sqrt{1-(3x)^2}}]}{-\frac{1}{\sqrt{1-\sin^{-1} 2 x}} * \frac{1}{\sqrt{1-(2x)^2}}+\frac{1}{\sqrt{1+\tan^{-1} 2 x}} * \frac{1}{1+(2x)^2}}\)
03

Cancel out common factors and evaluate the limit

Now, we will cancel out the common factors and evaluate the limit: \(\lim_{x \rightarrow 0} \frac{3\sqrt[3]{(1-\sin^{-1} 3 x)^2} * (1+(3x)^2) + 3\sqrt[3]{(1+\tan ^{-1} 3 x)^2} * \sqrt{1-(3x)^2}}{1+(2x)^2}\) Plug \(x=0\) in the expression: $\frac{3\sqrt[3]{1^2} * (1+0) + 3\sqrt[3]{1^2} * \sqrt{1}}{1+0} =\frac{3+3}{1} =6$ So none of the given options (A, B, and C) match the result. Therefore, our answer is: (D) None

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\lim _{x \rightarrow 0} \frac{6 x^{2}(\cot x)(\operatorname{cosec} 2 x)}{\sec \left(\cos x+\pi \tan \left(\frac{\pi}{4 \sec x}\right)-1\right)}$ has the value equal to (A) 6 (B) \(-6\) (C) 0 (D) \(-3\)

$\lim _{x \rightarrow a^{-}} \sqrt{a^{2}-x^{2}} \cot \left(\frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}\right)$ is equal to (A) \(\frac{\mathrm{a}}{\pi}\) (B) \(\frac{2 \mathrm{a}}{\pi}\) (C) \(-\frac{\mathrm{a}}{\pi}\) (D) \(\frac{4 \mathrm{a}}{\pi}\)

$\lim _{x \rightarrow 1} \frac{(\ell n(1+x)-\ell \operatorname{n} 2)\left(3.4^{x-1}-3 x\right)}{\left[(7+x)^{1 / 3}-(1+3 x)^{1 / 2}\right] \cdot \sin (x-1)}$ equals (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these

$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)

\(\mathrm{A}_{0}\) is an equilateral triangle of unit area, \(\mathrm{A}_{0}\) is divided into four equal parts, each an equilateral triangle, by joining the mid points of the sides of \(\mathrm{A}_{0}\). The central triangle is removed. Treating the remaining three triangles in the same way of division as was done to \(\mathrm{A}_{0}\), and this process is repeated \(\mathrm{n}\) times. The sum of the area of the triangles removed in \(\mathrm{S}_{\mathrm{n}}\) then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{S}_{\mathrm{n}}$ is (A) \(1 / 2\) (B) 1 (C) \(-1\) (D) 2

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free