Chapter 1: Problem 21
$\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^{-1} 3 x}-\sqrt[3]{1-\sin ^{-1} 3 x}}{\sqrt{1-\sin ^{-1} 2 x}-\sqrt{1+\tan ^{-1} 2 x}}$ is equal to (A) 1 (B) \(-1\) (C) 2 (D) None
Chapter 1: Problem 21
$\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^{-1} 3 x}-\sqrt[3]{1-\sin ^{-1} 3 x}}{\sqrt{1-\sin ^{-1} 2 x}-\sqrt{1+\tan ^{-1} 2 x}}$ is equal to (A) 1 (B) \(-1\) (C) 2 (D) None
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{x \rightarrow 0} \frac{6 x^{2}(\cot x)(\operatorname{cosec} 2 x)}{\sec \left(\cos x+\pi \tan \left(\frac{\pi}{4 \sec x}\right)-1\right)}$ has the value equal to (A) 6 (B) \(-6\) (C) 0 (D) \(-3\)
$\lim _{x \rightarrow a^{-}} \sqrt{a^{2}-x^{2}} \cot \left(\frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}\right)$ is equal to (A) \(\frac{\mathrm{a}}{\pi}\) (B) \(\frac{2 \mathrm{a}}{\pi}\) (C) \(-\frac{\mathrm{a}}{\pi}\) (D) \(\frac{4 \mathrm{a}}{\pi}\)
$\lim _{x \rightarrow 1} \frac{(\ell n(1+x)-\ell \operatorname{n} 2)\left(3.4^{x-1}-3 x\right)}{\left[(7+x)^{1 / 3}-(1+3 x)^{1 / 2}\right] \cdot \sin (x-1)}$ equals (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these
$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)
\(\mathrm{A}_{0}\) is an equilateral triangle of unit area, \(\mathrm{A}_{0}\) is divided into four equal parts, each an equilateral triangle, by joining the mid points of the sides of \(\mathrm{A}_{0}\). The central triangle is removed. Treating the remaining three triangles in the same way of division as was done to \(\mathrm{A}_{0}\), and this process is repeated \(\mathrm{n}\) times. The sum of the area of the triangles removed in \(\mathrm{S}_{\mathrm{n}}\) then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{S}_{\mathrm{n}}$ is (A) \(1 / 2\) (B) 1 (C) \(-1\) (D) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.