Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{y \rightarrow 0}\left[\lim _{x \rightarrow \infty} \frac{\exp \left(\mathrm{x} \ell \mathrm{n}\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)\right)-\exp \left(\mathrm{x} \& \mathrm{n}\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)\right)}{\mathrm{y}}\right]$ $\begin{array}{ll}\text { (A) } \mathrm{a}+\mathrm{b} & \text { (B) } \mathrm{a}-\mathrm{b}\end{array}$ (C) \(b-a \quad\) (D) \(-(a+b)\)

Short Answer

Expert verified
Question: Find the limit $$\lim_{y \rightarrow 0}\left[\lim_{x \rightarrow \infty} \frac{\exp \left(\mathrm{x}\;\mathrm{ln}\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)\right)-\exp \left(\mathrm{x}\;\mathrm{ln}\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)\right)}{\mathrm{y}}\right]$$ Answer: (B) \(a - b\)

Step by step solution

01

Simplify the expression using logarithm properties

First, let's simplify the expression using logarithm properties: $$\lim_{y \rightarrow 0}\left[\lim_{x \rightarrow \infty} \frac{\exp \left(\mathrm{x}\;\mathrm{ln}\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)\right)-\exp \left(\mathrm{x}\;\mathrm{ln}\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)\right)}{\mathrm{y}}\right]$$ Since the base of the natural logarithm is a common base for both exponentials, we have: $$\lim_{y \rightarrow 0}\left[\lim_{x \rightarrow \infty} \frac{\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{\mathrm{x}}-\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{\mathrm{x}}}{\mathrm{y}}\right]$$
02

Apply L'Hopital's rule to the limit of x

Now let's apply L'Hospital's rule to the inner limit: $$\lim_{x \rightarrow \infty} \frac{\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{\mathrm{x}}-\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{\mathrm{x}}}{\mathrm{y}}$$ Differentiate the numerator and denominator with respect to x, and simplify: $$\lim_{x \rightarrow \infty} \frac{a\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{\mathrm{x}-1}-b\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{\mathrm{x}-1}}{0}$$ Now we need to let x approach infinity and see what happens to the expression: $$\lim_{x \rightarrow \infty}\left(\frac{a\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{\mathrm{x}-1}-b\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{\mathrm{x}-1}}{0}\right)=\frac{\infty-\infty}{0}$$ This is an indeterminate form, so we need to apply L'Hopital's rule again to the limit of x: $$\lim_{x \rightarrow \infty} \frac{a\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{\mathrm{x}-2}-b\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{\mathrm{x}-2}}{0}$$ Now let x approach infinity: $$\lim_{x \rightarrow \infty}\left(\frac{a\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{\mathrm{x}-2}-b\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{\mathrm{x}-2}}{0}\right)=\frac{\infty-\infty}{0}$$ This is still an indeterminate form. Repeat L'Hopital's rule until the indeterminate form disappears: $$\lim_{x \rightarrow \infty} \frac{a\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)^{0}-b\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)^{0}}{0}$$ $$\lim_{x \rightarrow \infty}\left(\frac{a - b}{0}\right) = a - b$$ So we find that the inner limit equals \(a - b\).
03

Find the final limit

Now we can substitute the inner limit value back into the original expression: $$\lim_{y\rightarrow 0}(a-b)$$ As there is only a constant value in this limit, we can simply report the answer as: \(a - b\). The correct answer is (B).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)

The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these

Let $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}^{2 \mathrm{n}} \sin \frac{1}{\mathrm{x}}+\mathrm{x}}{1+\mathrm{x}^{2 \mathrm{n}}}$ then which of the following alternative(s) is/are correct ? (A) \(\lim _{x \rightarrow \infty} x f(x)=2\) (B) \(\lim \mathrm{f}(\mathrm{x})\) does not exist (C) \(\lim _{x \rightarrow 0} f(x)\) does not exist (D) \(\lim _{x \rightarrow-\gamma} \mathrm{f}(\mathrm{x})\) is equal to zero.

$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite

Column-I (A) If \(\mathrm{f}(\mathrm{x})=|\mathrm{x}-\mathrm{a}|+|\mathrm{x}-10|+|\mathrm{x}-\mathrm{a}-10|\), where \(\mathrm{a} \in(0,10)\), then the minimum value of \(\mathrm{f}\) is (B) $\lim _{x \rightarrow 0} \frac{x(1-\cos 2 x)^{2}-a(\sin x-\tan x)^{2}}{\tan ^{5} x+a \sin ^{8} x}$ is equal to (C) $\lim _{n \rightarrow \infty} \frac{n^{a} \sin ^{2}(n !)}{n+1}, 00, a \neq 1$ is Column-II (P) 0 (Q) 1 (R) 4 (S) 10 (T) depends on a

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free