Chapter 1: Problem 19
$\lim _{n \rightarrow \infty}\left(\frac{n !}{(m n)^{n}}\right)^{1 / n}(m \in N)$ is equal to (A) \(1 / \mathrm{em}\) (B) \(\mathrm{m} / \mathrm{e}\) (C) em (D) \(\mathrm{e} / \mathrm{m}\)
Chapter 1: Problem 19
$\lim _{n \rightarrow \infty}\left(\frac{n !}{(m n)^{n}}\right)^{1 / n}(m \in N)$ is equal to (A) \(1 / \mathrm{em}\) (B) \(\mathrm{m} / \mathrm{e}\) (C) em (D) \(\mathrm{e} / \mathrm{m}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeAssertion (A): An equilateral triangle is filled with n, rows of congruent circles. The limit of the ratio of area of circle to the area of triangle as \(\mathrm{n} \rightarrow \infty\) is \(\frac{\sqrt{3} \pi}{6}\) Reason (R): Let the triangle have side length 1 and radius of circles be \(r\). Then \(2(n-1) r+2 r \sqrt{3}\) \(=1 .\) There are \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\) circles, the area ratio \(=\frac{\pi}{2 \sqrt{3}} \frac{n(n-1)}{(n+(\sqrt{3}-1))^{2}}\) which approaches \(\frac{\sqrt{3} \pi}{6}\) as \(\mathrm{n} \rightarrow \infty\).
If \(\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin x^{2} d x}{x^{n}}\) is a non zero definite number, then value of \(\mathrm{n}\) is (A) 1 (B) 3 (C) 5 (D) 4
$\lim _{x \rightarrow 0} \frac{\ell n\left(1+x+x^{2}\right)+\ell n\left(1-x+x^{2}\right)}{\sec x-\cos x}$ is equal to (A) 1 (B) \(-1\) (C) 0 (D) \(\infty\)
In which one of the following cases, limit tends to e (A) \(\lim _{x \rightarrow 1} x^{\frac{1}{x-1}}\) (B) \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\) (C) \(\lim _{x \rightarrow \infty}\left(\frac{x+4}{x+2}\right)^{x+3}\) (D) \(\lim _{x \rightarrow \infty}(1+f(x))^{\frac{1}{f(x)}}\) when $\lim _{x \rightarrow \infty} f(x) \rightarrow 0$
The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.