Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)

Short Answer

Expert verified
A. The product does not converge. B. The product converges to \(\frac{26}{25}\). C. The product converges to \(\frac{35}{25}\). D. The product converges to \(\frac{37}{25}\). Answer: We can only be certain that the product converges to a finite value. Therefore, option (A) is incorrect, but we cannot definitively determine the exact value of the limit among options (B), (C), and (D).

Step by step solution

01

Identify the general term of the infinite product

The infinite product given in the exercise is as follows: \(\prod_{k=0}^{\infty}\left(1+\frac{1}{5^{2^k}}\right)\) Here, the general term of the product is \((1+\frac{1}{5^{2^k}})\), where \(k\) goes from \(0\) to \(\infty\).
02

Apply the formula for the infinite product

Let's denote the given infinite product by \(P\), so we can write: \(P = \lim_{n \rightarrow \infty}\prod_{k=0}^{n}\left(1+\frac{1}{5^{2^k}}\right)\) Now, we will take the logarithm of this product to convert it into a sum. We have: \(\ln(P) = \ln\left(\lim_{n \rightarrow \infty}\prod_{k=0}^{n}\left(1+\frac{1}{5^{2^k}}\right)\right)\) Using the properties of logarithms, we can rewrite this as a sum: \(\ln(P) = \lim_{n \rightarrow \infty}\sum_{k=0}^{n}\ln\left(1+\frac{1}{5^{2^k}}\right)\)
03

Analyze the behavior of the sum as \(n\) goes to infinity

Notice that the logarithm of the infinite product converges as \(n\) goes to infinity since the terms inside the logarithm are always positive and decreasing. So, we can take the limit inside the sum: \(\ln(P) = \sum_{k=0}^{\infty}\ln\left(1+\frac{1}{5^{2^k}}\right)\)
04

Calculate the infinite sum

Now, let's focus on calculating the infinite sum. We have: \(\ln(P) = \ln\left(1+\frac{1}{5^{2^0}}\right) + \ln\left(1+\frac{1}{5^{2^1}}\right) + \ln\left(1+\frac{1}{5^{2^2}}\right) + \ldots\) Using the properties of logarithms, this can be combined into a single logarithm: \(\ln(P) = \ln\left(\left(1+\frac{1}{5^{2^0}}\right)\left(1+\frac{1}{5^{2^1}}\right)\left(1+\frac{1}{5^{2^2}}\right)\ldots\right)\) This expression is equivalent to the original infinite product that we set out to find: \(\ln(P) = \ln\left(\prod_{k=0}^{\infty}\left(1+\frac{1}{5^{2^k}}\right)\right)\) So, we have shown that the logarithm of the infinite product converges and the sum goes to a finite value.
05

Find the limit of the product

We now have a relationship between the limit of the product and the logarithm of the limit of the product: \(P = \prod_{k=0}^{\infty}\left(1+\frac{1}{5^{2^k}}\right)\) Thus, \(\lim_{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right)\ldots\left(1+\frac{1}{5^{2^{*}}}\right) = P\) To find the value of \(P\), we can calculate the exponential of the logarithm we have found: \(P = \exp(\ln(P))\) Since \(\ln(P)\) is a finite value, we can conclude that the infinite product converges to a finite value. Thus, we eliminate option (A) from the given choices. However, we don't have the necessary information to determine the exact value of the limit. The remaining options (B), (C), and (D) involve fractions with different numerators and denominators, so we cannot definitively determine the value of the limit.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $\mathrm{f}(\mathrm{x})=\left\\{\begin{array}{cl}\frac{\sin ([\mathrm{x}]+2 \mathrm{x})}{[\mathrm{x}]} & \text { if }[\mathrm{x}] \neq 0 \\ 0 & \text { if }[\mathrm{x}]=0\end{array}\right.\(, where \)[.]$ denotes the greatest integer function, then \(\lim _{x \rightarrow 0} f(x)\) is (A) 0 (B) 1 (C) \(-1\) (D) none of these

Assertion (A): $\lim _{x \rightarrow 0}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ where [.] represents greatest integer function does not exist. Reason $(\mathrm{R}): \lim _{\mathrm{x} \rightarrow 0}\left(\frac{\mathrm{e}^{\mathrm{l} / \mathrm{x}}-1}{\mathrm{e}^{1 / \mathrm{x}}+1}\right)$ does not exist.

If $\mathrm{f}(\mathrm{x})=\left\\{\begin{array}{ll}\mathrm{x} & ; \mathrm{x} \leq 0 \\ -\mathrm{x} & ; \mathrm{x}>0\end{array}\right.$ and \(\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+|\mathrm{x}|\). Then \(\lim _{\rightarrow 0^{+}}\left(\log _{\sin x \mid} x\right)^{(x)}\) is (A) (B) (C) \(1 / 2\) (D) not exist

Let $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\left(\frac{3}{\pi} \tan ^{-1} 2 \mathrm{x}\right)^{2 \mathrm{n}}+5}$. Then the set of values of \(x\) for which \(f(x)=0\), is (A) \(|2 x|>\sqrt{3}\) (B) \(|(2 x)|<\sqrt{3}\) (C) \(|2 x| \geq \sqrt{3}\) (D) \(|2 x| \leq \sqrt{3}\)

Let $\mathrm{f}(\mathrm{x})=\left[\begin{array}{ll}\mathrm{mx}^{2}+\mathrm{n} & \text { for } \quad \mathrm{x}<0 \\ \mathrm{n} x+\mathrm{m} & \text { for } 0 \leq \mathrm{x} \leq 1 \\ \mathrm{n} \mathrm{x}^{3}+\mathrm{m} & \text { for } \quad \mathrm{x}>1\end{array}\right.\( where \)\mathrm{m}, \mathrm{n} \in \mathrm{R}$ then which of the following must be correct (A) \(\lim _{x \rightarrow 0} f(x)\) exist for all values of \(m\) and \(n\). (B) \(\lim _{x \rightarrow 0} f(x)\) exists only if \(m=n\). (C) \(\lim _{x \rightarrow 0} f(x)\) exists for all values of \(m\) and \(n\). (D) \(\lim _{x \rightarrow 1} f(x)\) exists for no values of \(m\) and \(n\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free