Chapter 1: Problem 15
$\lim _{x \rightarrow 0} \frac{1-\cos x+2 \sin x-\sin ^{3} x-x^{2}+3 x^{4}}{\tan ^{3} x-6 \sin ^{2} x+x-5 x^{3}}$ equals (A) 1 (B) 2 (C) 3 (D) 4
Chapter 1: Problem 15
$\lim _{x \rightarrow 0} \frac{1-\cos x+2 \sin x-\sin ^{3} x-x^{2}+3 x^{4}}{\tan ^{3} x-6 \sin ^{2} x+x-5 x^{3}}$ equals (A) 1 (B) 2 (C) 3 (D) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)
The number of points of where limit of \(\mathrm{f}(\mathrm{x})\) does not exist is : (A) 3 (B) 4 (C) 5 (D) None of these
$\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^{-1} 3 x}-\sqrt[3]{1-\sin ^{-1} 3 x}}{\sqrt{1-\sin ^{-1} 2 x}-\sqrt{1+\tan ^{-1} 2 x}}$ is equal to (A) 1 (B) \(-1\) (C) 2 (D) None
Column - I (A) \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) equals (B) The value of the limit, $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}$ is (C) $\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$ equals (D) Let tan \((2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|)\), where $\theta \in \mathbb{R}$ and \(\mathrm{f}(\mathrm{x})=(|\sin \theta|+\cos \theta \mid)^{\mathrm{x}} .\) The value of $\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{2}{\mathrm{f}(\mathrm{x})}\right]$ equals (Here [] represents greatest integer function) Column - II (P) \(-2\) (Q) \(-1\) (R) 0 (S) 1
The value of $\lim _{\mathrm{x} \rightarrow 1}\left(\frac{\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+1}{\mathrm{x}^{2}+2 \mathrm{x}+3}\right)^{\frac{1-\cos (\mathrm{x}-1)}{(\mathrm{x}-1)^{2}}}$ is (A) e (B) \(\mathrm{e}^{1 / 2}\) (C) 1 (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.