Chapter 1: Problem 14
$\lim _{x \rightarrow 0} \lim _{x \rightarrow 0} \frac{2(\tan x-\sin x)-x^{3}}{x^{5}}$ is equal to (A) \(1 / 4\) (B) \(1 / 2\) (C) \(1 / 3\) (D) None of these
Chapter 1: Problem 14
$\lim _{x \rightarrow 0} \lim _{x \rightarrow 0} \frac{2(\tan x-\sin x)-x^{3}}{x^{5}}$ is equal to (A) \(1 / 4\) (B) \(1 / 2\) (C) \(1 / 3\) (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeLet $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}^{2 \mathrm{n}} \sin \frac{1}{\mathrm{x}}+\mathrm{x}}{1+\mathrm{x}^{2 \mathrm{n}}}$ then which of the following alternative(s) is/are correct ? (A) \(\lim _{x \rightarrow \infty} x f(x)=2\) (B) \(\lim \mathrm{f}(\mathrm{x})\) does not exist (C) \(\lim _{x \rightarrow 0} f(x)\) does not exist (D) \(\lim _{x \rightarrow-\gamma} \mathrm{f}(\mathrm{x})\) is equal to zero.
Assertion \((\mathbf{A}):\) Let \(\mathrm{f}:(0, \infty) \rightarrow \mathrm{R}\) be a twice continuously differentiable function such that $\left|f^{\prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right| \leq 1\( for all \)x$ Then \(\lim _{x \rightarrow \infty} f(x)=0\). Reason (R) : Applying L'Hospital's rule twice on the function $\frac{f(x) e^{\frac{x^{2}}{2}}}{e^{\frac{x^{3}}{2}}}\( we get \)\lim _{x \rightarrow \infty} f(x)=0$.
The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these
The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these
\(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\) is equal to (A) (B) \(\mathrm{e}\) (C) \(2 \mathrm{e}^{-1}\) (D) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.