Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{x \rightarrow a^{-}} \sqrt{a^{2}-x^{2}} \cot \left(\frac{\pi}{2} \sqrt{\frac{a-x}{a+x}}\right)$ is equal to (A) \(\frac{\mathrm{a}}{\pi}\) (B) \(\frac{2 \mathrm{a}}{\pi}\) (C) \(-\frac{\mathrm{a}}{\pi}\) (D) \(\frac{4 \mathrm{a}}{\pi}\)

Short Answer

Expert verified
Question: Determine the limit of the given function as x approaches a from the left: \(\lim_{x \rightarrow a^-} \sqrt{a^2 - x^2} \cot \left(\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}\right)\) Answer: (D) \(\frac{4a}{\pi}\)

Step by step solution

01

Simplify the expression

First, we rewrite \(\cot \left(\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}\right)\) as \(\frac{\cos \left(\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}\right)}{\sin \left(\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}\right)}\) since cotangent is the ratio of cosine to sine. Therefore, the function becomes: $$\lim_{x \rightarrow a^-} \sqrt{a^2 - x^2} \frac{\cos \left(\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}\right)}{\sin \left(\frac{\pi}{2} \sqrt{\frac{a - x}{a + x}}\right)}$$
02

Use substitution

Let \(x = a - \Delta x\), where \(\Delta x \rightarrow 0^+\). As a result, the limit becomes: $$\lim_{\Delta x \rightarrow 0^+} \sqrt{a^2 - (a - \Delta x)^2} \frac{\cos \left(\frac{\pi}{2} \sqrt{\frac{\Delta x}{2a}}\right)}{\sin \left(\frac{\pi}{2} \sqrt{\frac{\Delta x}{2a}}\right)}$$
03

Simplify the limit

Now, we can simplify the expression further: $$\lim_{\Delta x \rightarrow 0^+} \sqrt{2a\Delta x} \frac{\cos \left(\frac{\pi}{2} \sqrt{\frac{\Delta x}{2a}}\right)}{\sin \left(\frac{\pi}{2} \sqrt{\frac{\Delta x}{2a}}\right)}$$
04

Use L'Hôpital's Rule

Since the limit has the form \(0 \cdot \frac{\cos (0)}{\sin (0)}\) which is an indeterminate form \(0 \cdot \frac{1}{0}\), we can apply L'Hôpital's Rule. Taking the derivative with respect to \(\Delta x\), we get: $$\lim_{\Delta x \rightarrow 0^+} \frac{\sqrt{2a} \cos \left(\frac{\pi}{2} \sqrt{\frac{\Delta x}{2a}}\right)}{\frac{\pi}{4} \sqrt{\frac{\Delta x}{2a}} \cos \left(\frac{\pi}{2} \sqrt{\frac{\Delta x}{2a}}\right)}$$
05

Simplify the limit

Now we can cancel out common terms and the limit becomes: $$\lim_{\Delta x \rightarrow 0^+} \frac{4}{\pi} \sqrt{\frac{2a}{\Delta x}}$$ We can now evaluate the limit as \(\Delta x\) approaches \(0^+\): $$\frac{4}{\pi} \sqrt{\frac{2a}{0^+}} = \frac{4a}{\pi}$$ The correct answer is: (D) \(\frac{4a}{\pi}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}\) is equal to, \((n \in N)\) (A) \(\mathrm{m}\) (B) \(\mathrm{m} / 2\) (C) \(\mathrm{e}^{\mathrm{m}}\) (D) \(\mathrm{e}^{\mathrm{m} 2}\)

$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)

Assertion \((A):\) A circle \(C_{1}\) is inscribed in an equilateral triangle \(\mathrm{ABC}\) with side length \(2 .\) Then circle \(\mathrm{C}_{2}\) is inscribed tangent to BC, CA and circle \(\mathrm{C}_{1}\). An infinite sequence of such circles is constructed, each tangent to \(\mathrm{BC}, \mathrm{CA}\) and the previous circle. The sum of areas of all the infinitely many circles is \(\frac{5 \pi}{8}\). Reason ( \(\mathbf{R}\) ) : Radius of \(\mathrm{C}_{1}\) is \(\frac{1}{\sqrt{3}}\), that of \(\mathrm{C}_{2}\) is \(\frac{1}{3 \sqrt{3}}\) and radius of the remaining circle each shrink by a factor \(\frac{1}{3}\).

\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these

$\lim _{y \rightarrow 0}\left[\lim _{x \rightarrow \infty} \frac{\exp \left(\mathrm{x} \ell \mathrm{n}\left(1+\frac{\mathrm{ay}}{\mathrm{x}}\right)\right)-\exp \left(\mathrm{x} \& \mathrm{n}\left(1+\frac{\mathrm{by}}{\mathrm{x}}\right)\right)}{\mathrm{y}}\right]$ $\begin{array}{ll}\text { (A) } \mathrm{a}+\mathrm{b} & \text { (B) } \mathrm{a}-\mathrm{b}\end{array}$ (C) \(b-a \quad\) (D) \(-(a+b)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free