Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Column - I (A) \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) equals (B) The value of the limit, $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}$ is (C) $\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$ equals (D) Let tan \((2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|)\), where $\theta \in \mathbb{R}$ and \(\mathrm{f}(\mathrm{x})=(|\sin \theta|+\cos \theta \mid)^{\mathrm{x}} .\) The value of $\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{2}{\mathrm{f}(\mathrm{x})}\right]$ equals (Here [] represents greatest integer function) Column - II (P) \(-2\) (Q) \(-1\) (R) 0 (S) 1

Short Answer

Expert verified
Question: Match the limits with their corresponding solutions. A. \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) B. \(\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}\) C. \(\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)\) D. \(\lim _{x \rightarrow \infty}\left[\frac{2}{(|\cos \theta - \sin \theta|)^x}\right]\) Solutions: (Q) -1 (R) 0 (S) 1 Answer: Limit A corresponds to (S) Limit B corresponds to (Q) Limit C corresponds to (R) Limit D corresponds to (S)

Step by step solution

01

Examining Limit A

First, let us examine the limit A: \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) To simplify the expression, we'll try rationalizing the numerator. Multiplying the term inside the limit by \(\frac{\sqrt{x+\sqrt{x}}+\sqrt{x-\sqrt{x}}}{\sqrt{x+\sqrt{x}}+\sqrt{x-\sqrt{x}}}\), we get: \(\lim _{x \rightarrow \infty}\frac{x}{\sqrt{x+\sqrt{x}}+\sqrt{x-\sqrt{x}}}\)
02

Solving Limit A

As x approaches infinity, \(\sqrt{x}\) approaches infinity as well. Therefore, we can divide each term inside the limit by \(\sqrt{x}\): \(\lim _{x \rightarrow \infty}\frac{1}{\sqrt{1+\frac{1}{\sqrt{x}}}+\sqrt{1-\frac{1}{\sqrt{x}}}} = \frac{1}{\sqrt{1+0}+\sqrt{1-0}} = 1\) So, limit A corresponds to (S).
03

Examining Limit B

Now, let us examine the limit B: \(\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}\)
04

Solving Limit B

We can rewrite the limit using L'Hopital's Rule: \(\lim _{x \rightarrow 0} \frac{\sin 2x - 2\tan x}{\ln(1+x^3)} = \lim _{x \rightarrow 0} \frac{2\cos 2x - 2\sec^2 x}{3x^2/(1+x^3)}\) Using the fact that \(\lim _{x \rightarrow 0} \frac{\sin x}{x} = 1\), we get: \(\lim _{x \rightarrow 0} \frac{2\cos 2x - 2(1+\tan^2 x)}{3x^2} = \frac{2\cos 0- 2}{0} = -1\) So, limit B corresponds to (Q).
05

Examining Limit C

Moving on to limit C: \(\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)\)
06

Solving Limit C

We can simplify the expression inside the limit as follows: \(\lim _{x \rightarrow 0^{-}}\left(\ln \frac{\sin ^{3} x}{x^{4}+e x^{3}}\right)\) Using L'Hopital's Rule, we differentiate the numerator and the denominator inside the limit with respect to x: \(\lim _{x \rightarrow 0^{-}}\frac{3\sin^2x\cos x}{4x^3+3ex^2} = \frac{0}{0+0} = 0\) So, limit C corresponds to (R).
07

Examining Limit D

Finally, let us work on limit D: The given expression is: \(tan (2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|),f(x)=(|\sin \theta|+\cos \theta)^{x}\) The limit to be found is: \(\lim _{x \rightarrow \infty}\left[\frac{2}{f(x)}\right]\)
08

Solving Limit D

Using the given equation and the fact that \(\cot x = \frac{1}{\tan x}\), we have: \(\tan (2 \pi|\sin \theta|) = \frac{1}{\tan (2 \pi|\cos \theta|)}\) Squaring both sides, we get: \(\tan ^2 (2 \pi|\sin \theta|) = \frac{1}{\tan ^2 (2 \pi|\cos \theta|)}\) Since \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\), we obtain: \(\frac{\sin ^2 (2 \pi|\sin \theta|)}{\cos ^2 (2 \pi|\sin \theta|)} = \frac{\cos ^2 (2 \pi|\cos \theta|)}{\sin ^2 (2 \pi|\cos \theta|)}\) Now, we compute the limit: \(\lim _{x \rightarrow \infty}\left[\frac{2}{(|\cos \theta - \sin \theta|)^x}\right] = \left[\frac{2}{1}\right] = 1\) So, limit D corresponds to (S). In conclusion, we have: - Limit A corresponds to (S) - Limit B corresponds to (Q) - Limit C corresponds to (R) - Limit D corresponds to (S)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free