Chapter 1: Problem 12
The value of $\lim _{x \rightarrow 2}\left(\left(\frac{x^{3}-4 x}{x^{3}-8}\right)^{-1}-\left(\frac{x+\sqrt{2 x}}{x-2}-\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right)$ is (A) \(1 / 2\) (B) 2 (C) 1 (D) None of these
Chapter 1: Problem 12
The value of $\lim _{x \rightarrow 2}\left(\left(\frac{x^{3}-4 x}{x^{3}-8}\right)^{-1}-\left(\frac{x+\sqrt{2 x}}{x-2}-\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right)$ is (A) \(1 / 2\) (B) 2 (C) 1 (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeAssertion (A): $\lim _{x \rightarrow \pi / 2} \frac{\sin \left(\cot ^{2} x\right)}{(\pi-2 x)^{2}}=\frac{1}{2}$ Reason $(\mathbf{R}): \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\( and \)\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1\(, where \)\theta$ is measured in radians.
If \(\mathrm{k}\) is an integer such that $\lim _{n \rightarrow \infty}\left(\left(\cos \frac{k \pi}{4}\right)^{n}-\left(\cos \frac{k \pi}{6}\right)^{n}\right)=0$, then (A) \(\mathrm{k}\) is divisible neither by 4 nor by 6 (B) \(\mathrm{k}\) must be divisible by 12 , but not necessarily by 24 (C) \(\mathrm{k}\) must be divisible by 24 (D) either \(\mathrm{k}\) is divisible by 24 or \(\mathrm{k}\) is divisible neither by 4 nor by 6
Assertion (A): $\lim _{x \rightarrow 0}[x]\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ where [.] represents greatest integer function does not exist. Reason $(\mathrm{R}): \lim _{\mathrm{x} \rightarrow 0}\left(\frac{\mathrm{e}^{\mathrm{l} / \mathrm{x}}-1}{\mathrm{e}^{1 / \mathrm{x}}+1}\right)$ does not exist.
The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)
\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.