Chapter 1: Problem 11
\(\lim _{x \rightarrow 0}\left\\{(1+x)^{\frac{2}{x}}\right\\}\) (where \(\\{x\\}\) denotes the fractional part of \(\mathrm{x}\) ) is equal to (A) \(\mathrm{e}^{2}-7\) (B) \(e^{2}-8\) (C) \(\mathrm{e}^{2}-6\) (D) None of these
Chapter 1: Problem 11
\(\lim _{x \rightarrow 0}\left\\{(1+x)^{\frac{2}{x}}\right\\}\) (where \(\\{x\\}\) denotes the fractional part of \(\mathrm{x}\) ) is equal to (A) \(\mathrm{e}^{2}-7\) (B) \(e^{2}-8\) (C) \(\mathrm{e}^{2}-6\) (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{x \rightarrow-\infty} \frac{x^{5} \tan \left(\frac{1}{\pi x^{2}}\right)+3|x|^{2}+7}{|x|^{3}+7|x|+8}$ is equal to (A) \(\pi\) (B) \(\frac{1}{\pi}\) (C) \(-\frac{1}{\pi}\) (D) None of these
The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these
$\lim _{x \rightarrow 1} \frac{(\ell n(1+x)-\ell \operatorname{n} 2)\left(3.4^{x-1}-3 x\right)}{\left[(7+x)^{1 / 3}-(1+3 x)^{1 / 2}\right] \cdot \sin (x-1)}$ equals (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these
$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite
What do you think about this solution?
We value your feedback to improve our textbook solutions.