Chapter 1: Problem 107
The number of points of where limit of \(\mathrm{f}(\mathrm{x})\) does not exist is : (A) 3 (B) 4 (C) 5 (D) None of these
Chapter 1: Problem 107
The number of points of where limit of \(\mathrm{f}(\mathrm{x})\) does not exist is : (A) 3 (B) 4 (C) 5 (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following functions have a graph which lies between the graphs of \(\mathrm{y}=|\mathrm{x}|\) and \(\mathrm{y}=-|\mathrm{x}|\) and have a limiting value as \(\mathrm{x} \rightarrow 0\). (A) \(\mathrm{y}=\mathrm{x} \cos \mathrm{x}\) (B) \(y=|x| \sin x\) (C) \(\mathrm{y}=\mathrm{x} \cos \frac{\mathrm{l}}{\mathrm{x}}\) (D) \(\mathrm{y}=\left|\mathrm{x} \sin \frac{1}{\mathrm{x}}\right|\)
Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are non zero constant number then $\lim _{\mathrm{r} \rightarrow \infty} \frac{\cos \frac{\mathrm{a}}{\mathrm{r}}-\cos \frac{\mathrm{b}}{\mathrm{r}} \cos \frac{\mathrm{c}}{\mathrm{r}}}{\sin \frac{\mathrm{b}}{\mathrm{r}} \sin \frac{\mathrm{c}}{\mathrm{r}}}$ equals (A) \(\frac{a^{2}+b^{2}-c^{2}}{2 b c}\) (B) \(\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{bc}}\) (C) \(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\) (D) independent of \(a, b, c\)
The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)
If \(\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin x^{2} d x}{x^{n}}\) is a non zero definite number, then value of \(\mathrm{n}\) is (A) 1 (B) 3 (C) 5 (D) 4
If \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.