Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assertion (A): $\lim _{x \rightarrow \pi / 2} \frac{\sin \left(\cot ^{2} x\right)}{(\pi-2 x)^{2}}=\frac{1}{2}$ Reason $(\mathbf{R}): \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\( and \)\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1\(, where \)\theta$ is measured in radians.

Short Answer

Expert verified
The limit of the given function is \(4\).

Step by step solution

01

Identify Variables and Functions

Let \(A(x) = \cot^2x\) and \(B(x) = (\pi - 2x)^2\). Now we have to find \(\lim_{x\rightarrow\pi/2}\frac{\sin A(x)}{B(x)}\).
02

Rewrite Cotangent in Terms of Sine and Cosine

Recall that \(\cot{x} = \frac {\cos{x}}{\sin{x}}\), so \(\cot^2x = \frac {\cos^2{x}}{\sin^2{x}}\). Now we have $$A(x) = \frac {\cos^2{x}}{\sin^2{x}}$$
03

Substitution and Simplification

Let \(y = \pi - 2x\). Then as \(x \rightarrow \pi/2\), we have \(y \rightarrow 0\). So, we can rewrite the limit as: $$\lim_{y\rightarrow0}\frac{\sin\left(\frac{\cos^2(\frac{\pi - y}{2})}{\sin^2(\frac{\pi - y}{2})}\right)}{y^2}$$
04

Apply the Sine Double Angle Formula

Recall that \(\sin(\pi - \theta) = \sin{\theta}\). Therefore, $$\lim_{y\rightarrow0}\frac{\sin\left(\frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}\right)}{y^2}$$
05

Apply the Given Limits

Applying the given limits: $$\lim_{\theta\rightarrow0}\frac{\sin\theta}{\theta}=1 \text{ and } \lim_{\theta\rightarrow0}\frac{\tan\theta}{\theta}=1$$ Substitute \(\theta = \frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}\) in the first limit, and \(\theta = \frac{y}{2}\) in the second limit. Then we can rewrite the expression as: $$\lim_{y\rightarrow0}\frac{\frac{\sin\left(\frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}\right)}{\frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}}}{\frac{y^2}{\frac{y^2}{4}}}$$
06

Simplify the Expression

Simplify the expression: $$\lim_{y\rightarrow0}\frac{4\sin\left(\frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}\right)}{y^2}$$ Now, use the limit result from Step 5: $$\frac{4}{\lim_{y\rightarrow0}\frac{y^2}{\frac{y^2}{4}}} = \frac{4}{1} = 4$$
07

Apply the Limit Product Rule

Apply the limit product rule, with \(C(y) = \frac{\sin\left(\frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}\right)}{\frac{\cos^2(\frac{y}{2})}{\sin^2(\frac{y}{2})}}\) and \(D(y) = \frac{y^2}{\frac{y^2}{4}}\): $$\lim_{y\rightarrow0}C(y) \times \lim_{y\rightarrow0}D(y) = \frac{1}{2}$$ Given our analysis and solution, Assertion (A) is incorrect as it claims the limit to be \(\frac{1}{2}\) when the limit equals to \(4\) according to our calculations.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$

\(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\) is equal to (A) (B) \(\mathrm{e}\) (C) \(2 \mathrm{e}^{-1}\) (D) 0

The true statement(s) is / are (A) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=0\), then there must exist a number \(\mathrm{d}\) such that \(\mathrm{f}(\mathrm{d})<0.001\) (B) \(\lim _{x \rightarrow c} f(x)=L\), is equivalent to $\lim _{x \rightarrow c}(f(x)-L)=0$. (C) \(\lim _{x \rightarrow a}(f(x)+g(x))\) may exist even if the limits $\lim _{x \rightarrow i}$ \(\left(\mathrm{f}(\mathrm{x})\right.\) and $\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{g}(\mathrm{x})$ do not exist. (D) If \(\lim _{x \rightarrow a} f(x)\) exists and $\lim _{x \rightarrow a}(f(x)+g(x))$ does not exist, then \(\lim _{x \rightarrow a} g(x)\) does not exist.

The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)

The value of $\lim _{x \rightarrow 2}\left(\left(\frac{x^{3}-4 x}{x^{3}-8}\right)^{-1}-\left(\frac{x+\sqrt{2 x}}{x-2}-\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right)$ is (A) \(1 / 2\) (B) 2 (C) 1 (D) None of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free