Chapter 9: Problem 42
Sketch the graph of the function. Label the intercepts, relative extrema, points of inflection, and asymptotes. Then state the domain of the function. \(y=x+\frac{32}{x^{2}}\)
Chapter 9: Problem 42
Sketch the graph of the function. Label the intercepts, relative extrema, points of inflection, and asymptotes. Then state the domain of the function. \(y=x+\frac{32}{x^{2}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(y=a x+b\), then \(\Delta y / \Delta x=d y / d x\)
Marginal Analysis, use differentials to approximate the change in cost, revenue, or profit corresponding to an increase in sales of one unit. For instance, in Exercise 29, approximate the change in cost as \(x\) increases from 12 units to 13 units. Then use a graphing utility to graph the function, and use the trace feature to verify your result. \(R=50 x-1.5 x^{2} \quad x=15\)
Sketch the graph of the function. Label the intercepts, relative extrema, points of inflection, and asymptotes. Then state the domain of the function. \(y=\frac{2 x}{x^{2}-1}\)
The cost \(C\) (in dollars) of removing \(p \%\) of the air pollutants in the stack emission of a utility company that burns coal is modeled by \(C=80,000 p /(100-p), \quad 0 \leq p<100\) (a) Find the costs of removing \(15 \%, 50 \%\), and \(90 \%\). (b) Find the limit of \(C\) as \(p \rightarrow 100^{-}\). Interpret the limit in the context of the problem. Use a graphing utility to verify your result.
Marginal Analysis, use differentials to approximate the change in cost, revenue, or profit corresponding to an increase in sales of one unit. For instance, in Exercise 29, approximate the change in cost as \(x\) increases from 12 units to 13 units. Then use a graphing utility to graph the function, and use the trace feature to verify your result. \(C=0.025 x^{2}+8 x+5 \quad x=10\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.