Chapter 9: Problem 23
A rectangle is bounded by the \(x\) - and \(y\) -axes and the graph of \(y=(6-x) / 2\) (see figure). What length and width should the rectangle have so that its area is a maximum?
Chapter 9: Problem 23
A rectangle is bounded by the \(x\) - and \(y\) -axes and the graph of \(y=(6-x) / 2\) (see figure). What length and width should the rectangle have so that its area is a maximum?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe cost and revenue functions for a product are \(C=25.5 x+1000\) and \(R=75.5 x\) (a) Find the average profit function \(\bar{P}=\frac{R-C}{x}\). (b) Find the average profits when \(x\) is 100,500 , and 1000 . (c) What is the limit of the average profit function as \(x\) approaches infinity? Explain your reasoning.
Sketch the graph of the function. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. \(y=2-x-x^{3}\)
The management of a company is considering three possible models for predicting the company's profits from 2003 through 2008 . Model I gives the expected annual profits if the current trends continue. Models II and III give the expected annual profits for various combinations of increased labor and energy costs. In each model, \(p\) is the profit (in billions of dollars) and \(t=0\) corresponds to 2003 . Model I: \(\quad p=0.03 t^{2}-0.01 t+3.39\) Model II: \(\quad p=0.08 t+3.36\) Model III: \(p=-0.07 t^{2}+0.05 t+3.38\) (a) Use a graphing utility to graph all three models in the same viewing window. (b) For which models are profits increasing during the interval from 2003 through 2008 ? (c) Which model is the most optimistic? Which is the most pessimistic? Which model would you choose? Explain.
Sketch a graph of a function \(f\) having the given characteristics. (There are many correct answers.) $$ \begin{aligned} &f(-1)=f(3)=0\\\ &f^{\prime}(1) \text { is undefined. }\\\ &f^{\prime}(x)<0 \text { if } x<1\\\ &f^{\prime}(x)>0 \text { if } x>1\\\ &f^{\prime \prime}(x)<0, x \neq 1\\\ &\lim _{x \rightarrow \infty} f(x)=4 \end{aligned} $$
Let \(x=1\) and \(\Delta x=0.01\). Find \(\Delta y\). \(f(x)=\frac{4}{\sqrt[3]{x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.