Chapter 9: Problem 12
Sketch the graph of the function. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. \(y=-x^{3}+3 x^{2}+9 x-2\)
Chapter 9: Problem 12
Sketch the graph of the function. Choose a scale that allows all relative extrema and points of inflection to be identified on the graph. \(y=-x^{3}+3 x^{2}+9 x-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to graph the function. Choose a window that allows all relative extrema and points of inflection to be identified on the graph. \(y=x^{1 / 3}+1\)
The monthly normal temperature \(T\) (in degrees Fahrenheit) for Pittsburgh, Pennsylvania can be modeled by \(T=\frac{22.329-0.7 t+0.029 t^{2}}{1-0.203 t+0.014 t^{2}}, \quad 1 \leq t \leq 12\) where \(t\) is the month, with \(t=1\) corresponding to January. Use a graphing utility to graph the model and find all absolute extrema. Interpret the meaning of these values in the context of the problem.
Marginal Analysis, use differentials to approximate the change in cost, revenue, or profit corresponding to an increase in sales of one unit. For instance, in Exercise 29, approximate the change in cost as \(x\) increases from 12 units to 13 units. Then use a graphing utility to graph the function, and use the trace feature to verify your result. \(R=50 x-1.5 x^{2} \quad x=15\)
The gross domestic product (GDP) of the United States for 2001 through 2005 is modeled by \(G=0.0026 x^{2}-7.246 x+14,597.85\) where \(G\) is the GDP (in billions of dollars) and \(x\) is the capital outlay (in billions of dollars). Use differentials to approximate the change in the GDP when the capital outlays change from \(\$ 2100\) billion to \(\$ 2300\) billion.
Find an equation of the tangent line to the function at the given point. Then find the function values and the tangent line values at \(f(x+\Delta x)\) and \(y(x+\Delta x)\) for \(\Delta x=-0.01\) and \(0.01\). \(f(x)=3 x^{2}-1\) \((2,11)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.