Chapter 7: Problem 78
Credit Card Rate The average annual rate \(r\) (in percent form) for commercial bank credit cards from 2000 through 2005 can be modeled by \(r=\sqrt{-1.7409 t^{4}+18.070 t^{3}-52.68 t^{2}+10.9 t+249}\) where \(t\) represents the year, with \(t=0\) corresponding to 2000\. (a) Find the derivative of this model. Which differentiation rule(s) did you use? (b) Use a graphing utility to graph the derivative on the interval \(0 \leq t \leq 5\). (c) Use the trace feature to find the years during which the finance rate was changing the most. (d) Use the trace feature to find the years during which the finance rate was changing the least.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.