Your biology professor gives you the encoded message below.
\(-204,47,-231,53,-265,61,-223,51,-9,2,-117,
28,-117,26,-166,37,-265,61,-145,34,-112,25,-76,19\)
Let \(A^{-1}=\left[\begin{array}{rr}w & x \\ y & z\end{array}\right]\). You
know that \(\left[\begin{array}{ll}-204 & 47\end{array}\right] A^{-1}=[1516]\)
and that \(\left[\begin{array}{ll}-231 & 53\end{array}\right] A^{-1}=[15 \quad
19]\), where \(A^{-1}\) is the
inverse of the encoding matrix \(A\). Explain how you can find the values of \(w,
x, y\), and \(z\). Decode the message.