Chapter 4: Problem 46
Population The population \(P\) of the United States officially reached 300 million at about 7:46 A.M. E.S.T. on Tuesday, October 17,2006 . The table shows the U.S. populations (in millions) since 1900. (Source: U.S. Census Bureau)$$ \begin{array}{|c|c|} \hline \text { Year } & \text { Population } \\ \hline 1900 & 76 \\ \hline 1910 & 92 \\ \hline 1920 & 106 \\ \hline 1930 & 123 \\ \hline 1940 & 132 \\ \hline 1950 & 151 \\ \hline \end{array} $$$$ \begin{array}{|c|c|} \hline \text { Year } & \text { Population } \\ \hline 1960 & 179 \\ \hline 1970 & 203 \\ \hline 1980 & 227 \\ \hline 1990 & 250 \\ \hline 2000 & 282 \\ \hline 2006 & 300 \\ \hline \end{array} $$(a) Use a graphing utility to create a scatter plot of the data. Let \(t\) represent the year, with \(t=0\) corresponding to 1900 . (b) Use the regression feature of a graphing utility to find an exponential model for the data. Use the Inverse Property \(b=e^{\ln b}\) to rewrite the model as an exponential model in base \(e\). (c) Graph the exponential model in base \(e\) with the scatter plot of the data. What appears to be happening to the relationship between the data points and the regression curve at \(t=100\) and \(t=106 ?\) (d) Use the regression feature of a graphing utility to find a logistic growth model for the data. Graph each model using the window settings shown below. Which model do you think will give more accurate predictions of the population well beyond \(2006 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.