Population The populations \(P\) of the United States (in thousands) from 1990
to 2005 are shown in the table. (Source: U.S. Census Bureau)$$
\begin{array}{|c|c|}
\hline \text { Year } & \text { Population } \\
\hline 1990 & 250,132 \\
\hline 1991 & 253,493 \\
\hline 1992 & 256,894 \\
\hline 1993 & 260,255 \\
\hline 1994 & 263,436 \\
\hline 1995 & 266,557 \\
\hline 1996 & 269,667 \\
\hline 1997 & 272,912 \\
\hline
\end{array}
$$$$
\begin{array}{|c|c|}
\hline \text { Year } & \text { Population } \\
\hline 1998 & 276,115 \\
\hline 1999 & 279,295 \\
\hline 2000 & 282,403 \\
\hline 2001 & 285,335 \\
\hline 2002 & 288,216 \\
\hline 2003 & 291,089 \\
\hline 2004 & 293,908 \\
\hline 2005 & 296,639 \\
\hline
\end{array}
$$(a) Use a graphing utility to create a scatter plot of the data. Let \(t\)
represent the year, with \(t=0\) corresponding to 1990 .
(b) Use the regression feature of a graphing utility to find an exponential
model for the data. Use the Inverse Property \(b=e^{\ln b}\) to rewrite the
model as an exponential model in base \(e\).
(c) Use the regression feature of a graphing utility to find a linear model
and a quadratic model for the data.
(d) Use a graphing utility to graph the exponential model in base \(e\) and the
models in part (c) with the scatter plot.
(e) Use each model to predict the populations in 2008 , 2009 , and 2010 . Do
all models give reasonable predictions? Explain.