Chapter 4: Problem 2
Write the logarithm in terms of common logarithms.\(\log _{7} 12\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 4: Problem 2
Write the logarithm in terms of common logarithms.\(\log _{7} 12\)
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve the logarithmic equation algebraically. Approximate the result to three decimal places.\(5 \log _{3}(x+1)=12\)
A grape has a pH of \(3.5\), and baking soda has a pH of \(8.0\). The hydrogen ion concentration of the grape is how many times that of the baking soda?
Thawing a Package of Steaks You take a three-pound package of steaks out of the freezer at 11 A.M. and place it in the refrigerator. Will the steaks be thawed in time to be grilled at 6 p.m.? Assume that the refrigerator temperature is \(40^{\circ} \mathrm{F}\) and that the freezer temperature is \(0^{\circ} \mathrm{F}\). Use the formula for Newton's Law of Cooling \(t=-5.05 \ln \frac{T-40}{0-40}\) where \(t\) is the time in hours (with \(t=0\) corresponding to 11 A.M.) and \(T\) is the temperature of the package of steaks (in degrees Fahrenheit).
Domestic Demand The domestic demands \(D\) (in thousands of barrels) for refined oil products in the United States from 1995 to 2005 are shown in the table. (Source: U.S. Energy Information Administration)$$ \begin{array}{|c|c|} \hline \text { Year } & \text { Demand } \\ \hline 1995 & 6,469,625 \\ \hline 1996 & 6,701,094 \\ \hline 1997 & 6,796,300 \\ \hline 1998 & 6,904,705 \\ \hline 1999 & 7,124,435 \\ \hline 2000 & 7,210,566 \\ \hline \end{array} $$$$ \begin{array}{|c|c|} \hline \text { Year } & \text { Demand } \\ \hline 2001 & 7,171,885 \\ \hline 2002 & 7,212,765 \\ \hline 2003 & 7,312,410 \\ \hline 2004 & 7,587,546 \\ \hline 2005 & 7,539,440 \\ \hline \end{array} $$(a) Use a spreadsheet software program to create a scatter plot of the data. Let \(t\) represent the year, with \(t=5\) corresponding to 1995 . (b) Use the regression feature of a spreadsheet software program to find an exponential model for the data. Use the Inverse Property \(b=e^{\ln b}\) to rewrite the model as an exponential model in base \(e\). (c) Use the regression feature of a spreadsheet software program to find a logarithmic model \((y=a+b \ln x)\) for the data. (d) Use a spreadsheet software program to graph the exponential model in base \(e\) and the logarithmic model with the scatter plot. (e) Use both models to predict domestic demands in 2008 , 2009, and \(2010 .\) Do both models give reasonable predictions? Explain.
Solve the logarithmic equation algebraically. Approximate the result to three decimal places.\(\log _{3} x+\log _{3}(x-8)=2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.