Chapter 13: Problem 54
Use a symbolic integration utility to evaluate the double integral. $$ \int_{0}^{4} \int_{0}^{y} \frac{2}{(x+1)(y+1)} d x d y $$
Chapter 13: Problem 54
Use a symbolic integration utility to evaluate the double integral. $$ \int_{0}^{4} \int_{0}^{y} \frac{2}{(x+1)(y+1)} d x d y $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the region of integration and evaluate the double integral. $$ \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} d y d x $$
Evaluate the partial integral. $$ \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x $$
The Cobb-Douglas production function for an automobile manufacturer is \(f(x, y)=100 x^{0.6} y^{0.4}\) where \(x\) is the number of units of labor and \(y\) is the number of units of capital. Estimate the average production level if the number of units of labor \(x\) varies between 200 and 250 and the number of units of capital \(y\) varies between 300 and 325 .
Set up the integral for both orders of integration and use the more convenient order to evaluate the integral over the region \(R\). $$ \begin{aligned} &\int_{R} \int x y d A\\\ &R \text { : rectangle with vertices at }(0,0),(0,5),(3,5),(3,0) \end{aligned} $$
Use a double integral to find the volume of the solid bounded by the graphs of the equations. $$ z=x+v, x^{2}+v^{2}=4 \text { (first octant) } $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.