Chapter 13: Problem 52
Use a symbolic integration utility to evaluate the double integral. $$ \int_{0}^{3} \int_{0}^{x^{2}} \sqrt{x} \sqrt{1+x} d y d x $$
Chapter 13: Problem 52
Use a symbolic integration utility to evaluate the double integral. $$ \int_{0}^{3} \int_{0}^{x^{2}} \sqrt{x} \sqrt{1+x} d y d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the region of integration and evaluate the double integral. $$ \int_{0}^{2} \int_{0}^{1}(3 x+4 y) d y d x $$
Use the regression capabilities of a graphing utility or a spreadsheet to find linear and quadratic models for the data. State which model best fits the data. $$ (1,10.3),(2,14.2),(3,18.9),(4,23.7),(5,29.1),(6,35) $$
Use a double integral to find the area of the region bounded by the graphs of the equations. $$ y=x^{3 / 2}, y=x $$
Find the average value of \(f(x, y)\) over the region \(R\). $$ \begin{aligned} &f(x, y)=x y\\\ &R: \text { rectangle with vertices }(0,0),(4,0),(4,2),(0,2) \end{aligned} $$
Plot the points and determine whether the data have positive, negative, or no linear correlation (see figures below). Then use a graphing utility to find the value of \(r\) and confirm your result. The number \(r\) is called the correlation coefficient. It is a measure of how well the model fits the data. Correlation coefficients vary between \(-1\) and 1, and the closer \(|r|\) is to 1, the better the model. $$ (1,7.5),(2,7),(3,7),(4,6),(5,5),(6,4.9) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.