Chapter 13: Problem 39
Find values of \(x\) and \(y\) such that \(f_{x}(x, y)=0\) and \(f_{y}(x, y)=0\) simultaneously. $$ f(x, y)=x^{2}+4 x y+y^{2}-4 x+16 y+3 $$
Chapter 13: Problem 39
Find values of \(x\) and \(y\) such that \(f_{x}(x, y)=0\) and \(f_{y}(x, y)=0\) simultaneously. $$ f(x, y)=x^{2}+4 x y+y^{2}-4 x+16 y+3 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the regression capabilities of \(a\) graphing utility or a spreadsheet to find any model that best fits the data points. $$ (0,0.5),(1,7.6),(3,60),(4.2,117),(5,170),(7.9,380) $$
Use the regression capabilities of a graphing utility or a spreadsheet to find linear and quadratic models for the data. State which model best fits the data. $$ (1,10.3),(2,14.2),(3,18.9),(4,23.7),(5,29.1),(6,35) $$
Plot the points and determine whether the data have positive, negative, or no linear correlation (see figures below). Then use a graphing utility to find the value of \(r\) and confirm your result. The number \(r\) is called the correlation coefficient. It is a measure of how well the model fits the data. Correlation coefficients vary between \(-1\) and 1, and the closer \(|r|\) is to 1, the better the model. $$ (1,7.5),(2,7),(3,7),(4,6),(5,5),(6,4.9) $$
Evaluate the double integral. $$ \int_{1}^{2} \int_{0}^{4}\left(3 x^{2}-2 y^{2}+1\right) d x d y $$
Plot the points and determine whether the data have positive, negative, or no linear correlation (see figures below). Then use a graphing utility to find the value of \(r\) and confirm your result. The number \(r\) is called the correlation coefficient. It is a measure of how well the model fits the data. Correlation coefficients vary between \(-1\) and 1, and the closer \(|r|\) is to 1, the better the model. $$ (0.5,9),(1,8.5),(1.5,7),(2,5.5),(2.5,5),(3,3.5) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.