Chapter 13: Problem 29
Sketch the region \(R\) whose area is given by the double integral. Then change the order of integration and show that both orders yield the same area. $$ \int_{0}^{2} \int_{x / 2}^{1} d y d x $$
Chapter 13: Problem 29
Sketch the region \(R\) whose area is given by the double integral. Then change the order of integration and show that both orders yield the same area. $$ \int_{0}^{2} \int_{x / 2}^{1} d y d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freePlot the points and determine whether the data have positive, negative, or no linear correlation (see figures below). Then use a graphing utility to find the value of \(r\) and confirm your result. The number \(r\) is called the correlation coefficient. It is a measure of how well the model fits the data. Correlation coefficients vary between \(-1\) and 1, and the closer \(|r|\) is to 1, the better the model. $$ (1,4),(2,6),(3,8),(4,11),(5,13),(6,15) $$
Use the regression capabilities of \(a\) graphing utility or a spreadsheet to find any model that best fits the data points. $$ \begin{aligned} &(1,13), \quad(2,16.5),(4,24),(5,28),(8,39),(11,50.25) \\ &(17,72),(20,85) \end{aligned} $$
The revenues \(y\) (in millions of dollars) for Earthlink from 2000 through 2006 are shown in the table. $$ \begin{aligned} &\begin{array}{|l|l|l|l|l|} \hline \text { Year } & 2000 & 2001 & 2002 & 2003 \\ \hline \text { Revenue, } y & 986.6 & 1244.9 & 1357.4 & 1401.9 \\ \hline \end{array}\\\ &\begin{array}{|l|l|l|l|} \hline \text { Year } & 2004 & 2005 & 2006 \\ \hline \text { Revenue, } y & 1382.2 & 1290.1 & 1301.3 \\ \hline \end{array} \end{aligned} $$ (a) Use a graphing utility or a spreadsheet to create a scatter plot of the data. Let \(t=0\) represent the year 2000 . (b) Use the regression capabilities of a graphing utility or a spreadsheet to find an appropriate model for the data. (c) Explain why you chose the type of model that you created in part (b).
Evaluate the double integral. $$ \int_{0}^{1} \int_{0}^{y}(x+y) d x d y $$
Evaluate the partial integral. $$ \int_{0}^{\sqrt{4-x^{2}}} x^{2} y d y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.