Chapter 13: Problem 23
Evaluate the double integral. $$ \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x+y) / 2} d y d x $$
Chapter 13: Problem 23
Evaluate the double integral. $$ \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x+y) / 2} d y d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the region \(R\) whose area is given by the double integral. Then change the order of integration and show that both orders yield the same area. $$ \int_{1}^{2} \int_{2}^{4} d x d y $$
Sketch the region of integration and evaluate the double integral. $$ \int_{0}^{3} \int_{0}^{1}(2 x+6 y) d y d x $$
Evaluate the double integral. $$ \int_{0}^{1} \int_{0}^{x} \sqrt{1-x^{2}} d y d x $$
Evaluate the double integral. $$ \int_{0}^{1} \int_{y}^{2 y}\left(1+2 x^{2}+2 y^{2}\right) d x d y $$
Use a symbolic integration utility to evaluate the double integral. $$ \int_{0}^{1} \int_{0}^{2} e^{-x^{2}-y^{2}} d x d y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.