Chapter 13: Problem 2
Find any critical points and relative extrema of the function. $$ f(x, y)=x^{2}+y^{2}+2 x-6 y+6 $$
Chapter 13: Problem 2
Find any critical points and relative extrema of the function. $$ f(x, y)=x^{2}+y^{2}+2 x-6 y+6 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the double integral. $$ \int_{0}^{2} \int_{3 y^{2}-6 y}^{2 y-y^{2}} 3 y d x d y $$
Evaluate the double integral. $$ \int_{0}^{1} \int_{0}^{x} \sqrt{1-x^{2}} d y d x $$
Use a symbolic integration utility to evaluate the double integral. $$ \int_{0}^{3} \int_{0}^{x^{2}} \sqrt{x} \sqrt{1+x} d y d x $$
Evaluate the double integral. $$ \int_{0}^{1} \int_{0}^{y}(x+y) d x d y $$
Set up the integral for both orders of integration and use the more convenient order to evaluate the integral over the region \(R\). $$ \begin{aligned} &\int_{R} \int x y d A\\\ &R \text { : rectangle with vertices at }(0,0),(0,5),(3,5),(3,0) \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.