Chapter 13: Problem 17
Examine the function for relative extrema and saddle points. $$ f(x, y)=(x+y) e^{1-x^{2}-y^{2}} $$
Chapter 13: Problem 17
Examine the function for relative extrema and saddle points. $$ f(x, y)=(x+y) e^{1-x^{2}-y^{2}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the region of integration and evaluate the double integral. $$ \int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2-x^{2}}}} d y d x $$
Exercises 55 and 56, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int_{-1}^{1} \int_{-2}^{2} y d y d x=\int_{-1}^{1} \int_{-2}^{2} y d x d y $$
The Cobb-Douglas production function for an automobile manufacturer is \(f(x, y)=100 x^{0.6} y^{0.4}\) where \(x\) is the number of units of labor and \(y\) is the number of units of capital. Estimate the average production level if the number of units of labor \(x\) varies between 200 and 250 and the number of units of capital \(y\) varies between 300 and 325 .
Plot the points and determine whether the data have positive, negative, or no linear correlation (see figures below). Then use a graphing utility to find the value of \(r\) and confirm your result. The number \(r\) is called the correlation coefficient. It is a measure of how well the model fits the data. Correlation coefficients vary between \(-1\) and 1, and the closer \(|r|\) is to 1, the better the model. $$ (1,7.5),(2,7),(3,7),(4,6),(5,5),(6,4.9) $$
Sketch the region \(R\) whose area is given by the double integral. Then change the order of integration and show that both orders yield the same area. $$ \int_{0}^{1} \int_{y^{2}}^{\sqrt[3]{y}} d x d y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.