Chapter 13: Problem 17
Evaluate the double integral. $$ \int_{1}^{2} \int_{0}^{4}\left(3 x^{2}-2 y^{2}+1\right) d x d y $$
Chapter 13: Problem 17
Evaluate the double integral. $$ \int_{1}^{2} \int_{0}^{4}\left(3 x^{2}-2 y^{2}+1\right) d x d y $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSet up the integral for both orders of integration and use the more convenient order to evaluate the integral over the region \(R\). $$ \begin{aligned} &\int_{R} \int x d A\\\ &R: \text { semicircle bounded by } y=\sqrt{25-x^{2}} \text { and } y=0 \end{aligned} $$
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression quadratic for the given points. Then plot the points and graph the least squares regression quadratic. $$ (-2,0),(-1,0),(0,1),(1,2),(2,5) $$
Use a double integral to find the area of the region bounded by the graphs of the equations. $$ 2 x-3 y=0, x+y=5, y=0 $$
Find the average value of \(f(x, y)\) over the region \(R\). $$ \begin{aligned} &f(x, y)=x^{2}+y^{2}\\\ &R: \text { square with vertices }(0,0),(2,0),(2,2),(0,2) \end{aligned} $$
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the given points. $$ (-10,10),(-5,8),(3,6),(7,4),(5,0) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.