Chapter 13: Problem 13
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the given points. $$ (-3,4),(-1,2),(1,1),(3,0) $$
Chapter 13: Problem 13
Use the regression capabilities of a graphing utility or a spreadsheet to find the least squares regression line for the given points. $$ (-3,4),(-1,2),(1,1),(3,0) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe population density (in people per square mile) for a coastal town can be modeled by \(f(x, y)=\frac{120,000}{(2+x+y)^{3}}\) where \(x\) and \(y\) are measured in miles. What is the population inside the rectangular area defined by the vertices \((0,0)\), \((2,0),(0,2)\), and \((2,2) ?\)
Plot the points and determine whether the data have positive, negative, or no linear correlation (see figures below). Then use a graphing utility to find the value of \(r\) and confirm your result. The number \(r\) is called the correlation coefficient. It is a measure of how well the model fits the data. Correlation coefficients vary between \(-1\) and 1, and the closer \(|r|\) is to 1, the better the model. $$ (1,4),(2,6),(3,8),(4,11),(5,13),(6,15) $$
Set up the integral for both orders of integration and use the more convenient order to evaluate the integral over the region \(R\). $$ \begin{aligned} &\int_{R} \int x y d A\\\ &R \text { : rectangle with vertices at }(0,0),(0,5),(3,5),(3,0) \end{aligned} $$
Find the average value of \(f(x, y)\) over the region \(R\). $$ \begin{aligned} &f(x, y)=x^{2}+y^{2}\\\ &R: \text { square with vertices }(0,0),(2,0),(2,2),(0,2) \end{aligned} $$
Evaluate the double integral. Note that it is necessary to change the order of integration. $$ \int_{0}^{3} \int_{y}^{3} e^{x^{2}} d x d y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.