Chapter 12: Problem 50
$$ y=\frac{\ln x}{x^{2}}, y=0, x=1, x=e $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 12: Problem 50
$$ y=\frac{\ln x}{x^{2}}, y=0, x=1, x=e $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeApproximate the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule for the indicated value of \(n\). (Round your answers to three significant digits.) $$ \int_{0}^{1} \sqrt{1-x^{2}} d x, n=8 $$
Use a spreadsheet to complete the table for the specified values of \(a\) and \(n\) to demonstrate that \(\lim _{x \rightarrow \infty} x^{n} e^{-a x}=0, \quad a>0, n>0\) \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 1 & 10 & 25 & 50 \\ \hline\(x^{n} e^{-a x}\) & & & & \\ \hline \end{tabular} $$ a=\frac{1}{2}, n=5 $$
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. \int_{0}^{2} x^{2} d x, n=4
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{0}^{1} \frac{1}{x^{2}} d x $$
Present Value In Exercises 25 and 26, use a program similar to the Simpson's Rule program on page 906 with \(n=8\) to approximate the present value of the income \(c(t)\) over \(t_{1}\) years at the given annual interest rate \(r\). Then use the integration capabilities of a graphing utility to approximate the present value. Compare the results. (Present value is defined in Section 12.1.) $$ c(t)=6000+200 \sqrt{t}, r=7 \%, t_{1}=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.