Chapter 12: Problem 50
Evaluate the definite integral. $$ \int_{1}^{3} x^{2} \ln x d x $$
Chapter 12: Problem 50
Evaluate the definite integral. $$ \int_{1}^{3} x^{2} \ln x d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the region satisfying the inequalities. Find the area of the region. $$ y \leq e^{-x}, y \geq 0, x \geq 0 $$
Approximate the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule for the indicated value of \(n\). (Round your answers to three significant digits.) $$ \int_{0}^{1} \sqrt{1-x^{2}} d x, n=8 $$
Find the indefinite integral (a) using the integration table and (b) using the specified method. Integral \mathrm{Method } $$ \int x^{4} \ln x d x \quad \text { Integration by parts } $$
Use the error formulas to find bounds for the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule. (Let \(n=4 .\).) $$ \int_{0}^{1} \frac{1}{x+1} d x $$
Use a spreadsheet to complete the table for the specified values of \(a\) and \(n\) to demonstrate that \(\lim _{x \rightarrow \infty} x^{n} e^{-a x}=0, \quad a>0, n>0\) \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 1 & 10 & 25 & 50 \\ \hline\(x^{n} e^{-a x}\) & & & & \\ \hline \end{tabular} $$ a=1, n=1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.