Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Present Value A business is expected to yield a continuous flow of profit at the rate of \(\$ 500,000\) per year. If money will earn interest at the nominal rate of \(9 \%\) per year compounded continuously, what is the present value of the business (a) for 20 years and (b) forever?

Short Answer

Expert verified
The present value of the business for 20 years is approximately \$2,482,362.57 and forever is about \$5,555,555.56

Step by step solution

01

Understand Continuously Compounding Interest Formula

We can calculate the present value using the formula for continuously compounded interest, which is \( PV = P * e^{-rt} \) where P is the principal amount, r is the interest rate, and t is the time.
02

Calculate Present Value for 20 Years

Given P = \$500,000 per year, r = 9% = 0.09, and t = 20 years, we can substitute these values into the formula to find the present value for 20 years. \( PV = \$500,000 * e^{-0.09*20} \)
03

Calculate Present Value Forever

To calculate the present value of a continuing flow, we use the formula \( PV = P / r \). So, \( PV = \$500,000 / 0.09 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. $$ \int_{0}^{2} x^{3} d x, n=8 $$

Use a program similar to the Simpson's Rule program on page 906 with \(n=6\) to approximate the indicated normal probability. The standard normal probability density function is \(f(x)=(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}\). If \(x\) is chosen at random from a population with this density, then the probability that \(x\) lies in the interval \([a, b]\) is \(P(a \leq x \leq b)=\int_{a}^{b} f(x) d x\). $$ P(0 \leq x \leq 1.5) $$

Use the error formulas to find bounds for the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule. (Let \(n=4 .\).) $$ \int_{0}^{1} e^{-x^{2}} d x $$

Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. $$ \int_{0}^{1}\left(\frac{x^{2}}{2}+1\right) d x, n=4 $$

Lumber Use The table shows the amounts of lumber used for residential upkeep and improvements (in billions of board-feet per year) for the years 1997 through \(2005 .\) (Source: U.S. Forest Service) \begin{tabular}{|l|c|c|c|c|c|} \hline Year & 1997 & 1998 & 1999 & 2000 & 2001 \\ \hline Amount & \(15.1\) & \(14.7\) & \(15.1\) & \(16.4\) & \(17.0\) \\ \hline \end{tabular} \begin{tabular}{|l|c|c|c|c|} \hline Year & 2002 & 2003 & 2004 & 2005 \\ \hline Amount & \(17.8\) & \(18.3\) & \(20.0\) & \(20.6\) \\ \hline \end{tabular} (a) Use Simpson's Rule to estimate the average number of board-feet (in billions) used per year over the time period. (b) A model for the data is $$ L=6.613+0.93 t+2095.7 e^{-t}, \quad 7 \leq t \leq 15 $$ where \(L\) is the amount of lumber used and \(t\) is the year, with \(t=7\) corresponding to 1997 . Use integration to find the average number of board- feet (in billions) used per year over the time period. (c) Compare the results of parts (a) and (b).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free