Chapter 12: Problem 4
Decide whether the integral is improper. Explain your reasoning. $$ \int_{1}^{\infty} x^{2} d x $$
Chapter 12: Problem 4
Decide whether the integral is improper. Explain your reasoning. $$ \int_{1}^{\infty} x^{2} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. $$ \int_{0}^{2} x^{3} d x, n=8 $$
Use the definite integral below to find the required arc length. If \(f\) has a continuous derivative, then the arc length of \(f\) between the points \((a, f(a))\) and \((b, f(b))\) is \(\int_{b}^{a} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x\) Arc Length A fleeing hare leaves its burrow \((0,0)\) and moves due north (up the \(y\) -axis). At the same time, a pursuing lynx leaves from 1 yard east of the burrow \((1,0)\) and always moves toward the fleeing hare (see figure). If the lynx's speed is twice that of the hare's, the equation of the lynx's path is \(y=\frac{1}{3}\left(x^{3 / 2}-3 x^{1 / 2}+2\right)\) Find the distance traveled by the lynx by integrating over the interval \([0,1]\).
Use the error formulas to find bounds for the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule. (Let \(n=4 .\).) $$ \int_{0}^{2} x^{3} d x $$
Decide whether the integral is improper. Explain your reasoning. $$ \int_{1}^{3} \frac{d x}{x^{2}} $$
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. \int_{0}^{2} x^{2} d x, n=4
What do you think about this solution?
We value your feedback to improve our textbook solutions.