Chapter 12: Problem 33
Consider the region satisfying the inequalities. Find the area of the region. $$ y \leq \frac{1}{x^{2}}, y \geq 0, x \geq 1 $$
Chapter 12: Problem 33
Consider the region satisfying the inequalities. Find the area of the region. $$ y \leq \frac{1}{x^{2}}, y \geq 0, x \geq 1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeWomen's Height The mean height of American women between the ages of 30 and 39 is \(64.5\) inches, and the standard deviation is \(2.7\) inches. Find the probability that a 30 - to 39 -year-old woman chosen at random is (a) between 5 and 6 feet tall. (b) 5 feet 8 inches or taller. (c) 6 feet or taller
Explain why the integral is improper and determine whether it diverges or converges. Evaluate the integral if it converses. $$ \int_{0}^{\infty} e^{-x} d x $$
Use the definite integral below to find the required arc length. If \(f\) has a continuous derivative, then the arc length of \(f\) between the points \((a, f(a))\) and \((b, f(b))\) is \(\int_{b}^{a} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x\) Arc Length A fleeing hare leaves its burrow \((0,0)\) and moves due north (up the \(y\) -axis). At the same time, a pursuing lynx leaves from 1 yard east of the burrow \((1,0)\) and always moves toward the fleeing hare (see figure). If the lynx's speed is twice that of the hare's, the equation of the lynx's path is \(y=\frac{1}{3}\left(x^{3 / 2}-3 x^{1 / 2}+2\right)\) Find the distance traveled by the lynx by integrating over the interval \([0,1]\).
MAKE A DECISION: SCHOLARSHIP FUND You want to start a scholarship fund at your alma mater. You plan to give one \(\$ 18,000\) scholarship annually beginning one year from now and you have at most \(\$ 400,000\) to start the fund. You also want the scholarship to be given out indefinitely. Assuming an annual interest rate of \(5 \%\) compounded continuously, do you have enough money for the scholarship fund?
Find the indefinite integral (a) using the integration table and (b) using the specified method. Integral \mathrm{Method } $$ \begin{aligned} &\int \frac{1}{x^{2}(x+1)} d x\\\ &\text { Partial fractions } \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.