Chapter 12: Problem 22
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{\infty} x^{2} e^{-x^{3}} d x $$
Chapter 12: Problem 22
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{\infty} x^{2} e^{-x^{3}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why the integral is improper and determine whether it diverges or converges. Evaluate the integral if it converses. $$ \int_{0}^{\infty} e^{-x} d x $$
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{0}^{2} \frac{1}{(x-1)^{4 / 3}} d x $$
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{-1} \frac{1}{x^{2}} d x $$
Quality Control A company manufactures wooden yardsticks. The lengths of the yardsticks are normally distributed with a mean of 36 inches and a standard deviation of \(0.2\) inch. Find the probability that a yardstick is (a) longer than \(35.5\) inches. (b) longer than \(35.9\) inches.
Use a spreadsheet to complete the table for the specified values of \(a\) and \(n\) to demonstrate that \(\lim _{x \rightarrow \infty} x^{n} e^{-a x}=0, \quad a>0, n>0\) \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 1 & 10 & 25 & 50 \\ \hline\(x^{n} e^{-a x}\) & & & & \\ \hline \end{tabular} $$ a=1, n=1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.