Chapter 12: Problem 21
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{\infty} 2 x e^{-3 x^{2}} d x $$
Chapter 12: Problem 21
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{\infty} 2 x e^{-3 x^{2}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeMarginal Analysis In Exercises 27 and 28, use a program similar to the Simpson's Rule program on page 906 with \(n=4\) to approximate the change in revenue from the marginal revenue function \(d R / d x .\) In each case, assume that the number of units sold \(x\) increases from 14 to 16 . $$ \frac{d R}{d x}=50 \sqrt{x} \sqrt{20-x} $$
Find the indefinite integral (a) using the integration table and (b) using the specified method. Integral \mathrm{Method } $$ \begin{aligned} &\int \frac{1}{x^{2}-75} d x\\\ &\text { Partial fractions } \end{aligned} $$
Revenue The revenue (in dollars per year) for a new product is modeled by \(R=10,000\left[1-\frac{1}{\left(1+0.1 t^{2}\right)^{1 / 2}}\right]\) where \(t\) is the time in years. Estimate the total revenue from sales of the product over its first 2 years on the market.
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{0}^{2} \frac{1}{(x-1)^{4 / 3}} d x $$
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. $$ \int_{0}^{2} x \sqrt{x^{2}+1} d x, n=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.