Chapter 12: Problem 20
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{0} \frac{x}{x^{2}+1} d x $$
Chapter 12: Problem 20
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{0} \frac{x}{x^{2}+1} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{-1} \frac{1}{x^{2}} d x $$
Consider the region satisfying the inequalities. Find the area of the region. $$ y \leq \frac{1}{x^{2}}, y \geq 0, x \geq 1 $$
Find the indefinite integral (a) using the integration table and (b) using the specified method. Integral \mathrm{Method } $$ \int x^{2} e^{x} d x \quad \text { Integration by parts } $$
Decide whether the integral is improper. Explain your reasoning. $$ \int_{0}^{1} \frac{d x}{3 x-2} $$
Approximate the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule for the indicated value of \(n\). (Round your answers to three significant digits.) $$ \int_{0}^{3} \frac{x}{2+x+x^{2}} d x, n=6 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.