Chapter 12: Problem 19
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x $$
Chapter 12: Problem 19
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeMedian Age The table shows the median ages of the U.S. resident population for the years 1997 through \(2005 .\) (Source: U.S. Census Bureau) \begin{tabular}{|l|c|c|c|c|c|} \hline Year & 1997 & 1998 & 1999 & 2000 & 2001 \\ \hline Median age & \(34.7\) & \(34.9\) & \(35.2\) & \(35.3\) & \(35.6\) \\ \hline \end{tabular} \begin{tabular}{|l|c|c|c|c|} \hline Year & 2002 & 2003 & 2004 & 2005 \\ \hline Median age & \(35.7\) & \(35.9\) & \(36.0\) & \(36.2\) \\ \hline \end{tabular} (a) Use Simpson's Rule to estimate the average age over the time period. (b) A model for the data is \(A=31.5+1.21 \sqrt{t}\), \(7 \leq t \leq 15\), where \(A\) is the median age and \(t\) is the year, with \(t=7\) corresponding to 1997 . Use integration to find the average age over the time period. (c) Compare the results of parts (a) and (b).
Decide whether the integral is improper. Explain your reasoning. $$ \int_{0}^{1} \frac{d x}{3 x-2} $$
Explain why the integral is improper and determine whether it diverges or converges. Evaluate the integral if it converses. $$ \int_{-\infty}^{0} e^{2 x} d x $$
Quality Control A company manufactures wooden yardsticks. The lengths of the yardsticks are normally distributed with a mean of 36 inches and a standard deviation of \(0.2\) inch. Find the probability that a yardstick is (a) longer than \(35.5\) inches. (b) longer than \(35.9\) inches.
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{1}{x^{2}} d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.