Chapter 12: Problem 17
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{0} e^{-x} d x $$
Chapter 12: Problem 17
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{-\infty}^{0} e^{-x} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x $$
Explain why the integral is improper and determine whether it diverges or converges. Evaluate the integral if it converses. $$ \int_{3}^{4} \frac{1}{\sqrt{x-3}} d x $$
Use a program similar to the Simpson's Rule program on page 906 to approximate the integral. Use \(n=100\). $$ \int_{1}^{4} x^{2} \sqrt{x+4} d x $$
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{3}^{4} \frac{1}{\sqrt{x^{2}-9}} d x $$
Prove that Simpson's Rule is exact when used to approximate the integral of a cubic polynomial function, and demonstrate the result for \(\int_{0}^{1} x^{3} d x, n=2\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.