Chapter 12: Problem 14
Use partial fractions to find the indefinite integral. $$ \int \frac{4}{x^{2}-4} d x $$
Chapter 12: Problem 14
Use partial fractions to find the indefinite integral. $$ \int \frac{4}{x^{2}-4} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeMarginal Analysis In Exercises 27 and 28, use a program similar to the Simpson's Rule program on page 906 with \(n=4\) to approximate the change in revenue from the marginal revenue function \(d R / d x .\) In each case, assume that the number of units sold \(x\) increases from 14 to 16 . $$ \frac{d R}{d x}=5 \sqrt{8000-x^{3}} $$
Use the error formulas to find \(n\) such that the error in the approximation of the definite integral is less than \(0.0001\) using (a) the Trapezoidal Rule and (b) Simpson's Rule. $$ \int_{0}^{1} x^{3} d x $$
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. $$ \int_{1}^{2} \frac{1}{x} d x, n=4 $$
Use a spreadsheet to complete the table for the specified values of \(a\) and \(n\) to demonstrate that \(\lim _{x \rightarrow \infty} x^{n} e^{-a x}=0, \quad a>0, n>0\) \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 1 & 10 & 25 & 50 \\ \hline\(x^{n} e^{-a x}\) & & & & \\ \hline \end{tabular} $$ a=1, n=1 $$
Use the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral for the indicated value of \(n\). Compare these results with the exact value of the definite integral. Round your answers to four decimal places. $$ \int_{0}^{1}\left(\frac{x^{2}}{2}+1\right) d x, n=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.