Chapter 12: Problem 12
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x $$
Chapter 12: Problem 12
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a program similar to the Simpson's Rule program on page 906 with \(n=6\) to approximate the indicated normal probability. The standard normal probability density function is \(f(x)=(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}\). If \(x\) is chosen at random from a population with this density, then the probability that \(x\) lies in the interval \([a, b]\) is \(P(a \leq x \leq b)=\int_{a}^{b} f(x) d x\). $$ P(0 \leq x \leq 1.5) $$
Medicine A body assimilates a 12 -hour cold tablet at a rate \(\quad\) modeled \(\quad\) by \(\quad d C / d t=8-\ln \left(t^{2}-2 t+4\right)\), \(0 \leq t \leq 12\), where \(d C / d t\) is measured in milligrams per hour and \(t\) is the time in hours. Use Simpson's Rule with \(n=8\) to estimate the total amount of the drug absorbed into the body during the 12 hours.
Use a program similar to the Simpson's Rule program on page 906 to approximate the integral. Use \(n=100\). $$ \int_{2}^{5} 10 x e^{-x} d x $$
Consider the region satisfying the inequalities. Find the area of the region. $$ y \leq e^{-x}, y \geq 0, x \geq 0 $$
Use a spreadsheet to complete the table for the specified values of \(a\) and \(n\) to demonstrate that \(\lim _{x \rightarrow \infty} x^{n} e^{-a x}=0, \quad a>0, n>0\) \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 1 & 10 & 25 & 50 \\ \hline\(x^{n} e^{-a x}\) & & & & \\ \hline \end{tabular} $$ a=2, n=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.